517Анализ. Дифференциальное и интегральное исчисление. Операционное исчисление. Интегральные преобразования. Теория функций. Вариационное исчисление. Дифференциальные и интегральные уравнения. Функциональный анализ
← назад

Свободный доступ

Ограниченный доступ

Уточняется продление лицензии
Автор: Дячкин О. Д.
Изд-во Липецкого государственного технического университета
Методические указания соответствуют дисциплине «Функциональный анализ», отнесенной к базовой части Блока I «Дисциплины» направления 01.03.03 «Механика и математическое моделирование». Методические указания содержат теоретический и практический материал по принципу сжимающих отображений, одному из классических положений функционального анализа.
Предпросмотр: Функциональный анализ и численные методы.pdf (0,7 Мб)
Автор: Томашпольский В. Я.
М.: Изд-во МГТУ им. Н.Э. Баумана
Даны краткие теоретические сведения, примеры, задачи для самостоятельной работы и условия типового расчета по теме «Числовые ряды».
Предпросмотр: Числовые ряды.pdf (0,1 Мб)
Журнал "Тонкие химические технологии" (прежнее название [2006-2014] "Вестник МИТХТ") выходит один раз в два месяца и публикует обзоры и статьи по актуальным проблемам химической технологии и смежных наук. Журнал основан в 2006 году. Учредителем журнала является Московская государственная академия тонкой химической технологии им. М.В. Ломоносова (МИТХТ), ныне Московский государственный университет тонких химических технологий имени М.В. Ломоносова. Журнал входит в Перечень ведущих рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертации на соискание ученой степени доктора (кандидата) наук. Журнал реферируется в международной базе данных Chemical Abstracts, входит в международный каталог периодических изданий Ulrich.
Под новым названием "Тонкие химические технологии" журнал "Вестник МИТХТ" выходит, начиная с 1-го выпуска 10-го тома за 2015 год.
Предпросмотр: Тонкие химические технологии №2 (0) 2025.pdf (0,3 Мб)
Журнал является периодическим научным изданием, которое содержит публикации в форме статей и кратких сообщений по основным направлениям научно- исследовательской работы факульета ВМиК МГУ: вычислительным методам прикладной математики и математическому моделированию, исследованию операций и математическим методам прогнозирования, приложениям теории вероятностей и математической статистики, математическим методам исследования нелинейных управляющих систем и процессов, теории и методам системного программирования, программному и математическому обеспечению вычислительных машин и сетей
Предпросмотр: Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика №3 2017.pdf (0,2 Мб)
Автор: Денисенко Ю. И.
Изд-во ЛГТУ
Методические указания соответствуют дисциплине «Комплексный анализ» и содержат варианты заданий к типовому расчету по данной дисциплине «Комплексный анализ». Предназначены для самостоятельной работы студентов направлений 010800.62 «Механика и математическое моделирование» и 220100.62 «Системный анализ» по дисциплине «Комплексный анализ» и студентов всех специальностей, на которых изучается теория функций комплексного переменного.
Предпросмотр: Типовой расчет по дисциплине «Комплексный анализ».pdf (0,5 Мб)
Автор: Стилуэлл Джон
М.: ДМК Пресс
Эта книга – первое изложение обратной математики для аудитории, состоящей из математиков общего профиля. Обратная математика – новая дисциплина, которая «выворачивает наизнанку» традиционную математическую логику: ее цель – не вывод теорем, а поиск аксиом, которые позволяют доказать известные теоремы. Джон Стилуэлл рассказывает о том, как найти «правильные» аксиомы для доказательства фундаментальных теорем. Придерживаясь исторического взгляда на обратную математику, он описывает два ставших возможными благодаря ей направления развития. Первое – проект арифметизации анализа, предпринятый в XIX веке с целью определить все понятия анализа в терминах натуральных чисел и их множеств. Второе – выполненная в XX веке арифметизация математической логики и понятия вычисления. Таким образом, арифметика в некотором смысле лежит в основе анализа, логики и вычислений. Обратная математика опирается на эту идею, рассматривая анализ как арифметику, дополненную аксиомами существования бесконечных множеств.
Предпросмотр: Обратная математика. Доказательства, вывернутые наизнанку.pdf (0,6 Мб)
Журнал "Тонкие химические технологии" (прежнее название [2006-2014] "Вестник МИТХТ") выходит один раз в два месяца и публикует обзоры и статьи по актуальным проблемам химической технологии и смежных наук. Журнал основан в 2006 году. Учредителем журнала является Московская государственная академия тонкой химической технологии им. М.В. Ломоносова (МИТХТ), ныне Московский государственный университет тонких химических технологий имени М.В. Ломоносова. Журнал входит в Перечень ведущих рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертации на соискание ученой степени доктора (кандидата) наук. Журнал реферируется в международной базе данных Chemical Abstracts, входит в международный каталог периодических изданий Ulrich.
Под новым названием "Тонкие химические технологии" журнал "Вестник МИТХТ" выходит, начиная с 1-го выпуска 10-го тома за 2015 год.
Предпросмотр: Тонкие химические технологии №5 2015 (1).pdf (1,4 Мб)
М.: Директ-Медиа
Пособие является девятым выпуском учебника по всем разделам курса математики для бакалавров гидрометеорологических направлений, соответствует государственному образовательному стандарту и действующим программам. Активизация познавательной деятельности студентов, выработка у них способности самостоятельно решать достаточно сложные проблемы может быть достигнута при такой организации учебного процесса, когда каждому студенту выдаются индивидуальные домашние задания (ИДЗ) с обязательным последующим контролем их выполнения и выставлением оценок.
Предпросмотр: Дифференциальное исчисление функций нескольких переменных учебное пособие.pdf (0,4 Мб)
Автор: Шмелёв Павел Александрович
МГАФК
Содержание пособия соответствует требованиям Федерального
государственного образовательного стандарта высшего профессионального
образования третьего поколения по дисциплине «Высшая математика» для
вузов физической культуры. Оно содержит элементы дифференциального и
интегрального исчислений, начала теории дифференциальных уравнений. Пособие подготовлено на кафедре биомеханики и информационных
технологий.
Предпросмотр: Элементы математического анализа учебное пособие.pdf (0,9 Мб)
Автор: Присекин В. Л.
Изд-во НГТУ
Курс является классическим представителем математических дисциплин, образующих базу для подготовки специалистов в области прикладной механики. Основу курса составляет теория аналитических функций с некоторыми приложениями. Теория излагается как естественное обобщение теорем анализа функций вещественной переменной. Базой для изучения функций комплексной переменной являются: основы математического анализа, дифференциальное исчисление, функции нескольких независимых переменных, функциональные ряды. Учебное пособие предназначено для студентов старших курсов факультета летательных аппаратов при изучении дисциплин «Уравнения математической физики», «Теория упругости» и окажется полезным студентам других факультетов.
Предпросмотр: Основы теории аналитических функций.pdf (0,3 Мб)
Автор: Худайберганов Гулмирза
Сиб. федер. ун-т
Монография посвящена комплексному и гармоническому анализу в матричных областях многомерного комплексного пространства. Рассмотрены интегральные представления для голоморфных функций, вопросы голоморфного
продолжения, построения локального вычета и др.
Предпросмотр: Анализ в матричных областях.pdf (1,2 Мб)
Автор: Глушко Андрей Владимирович
Издательский дом ВГУ
Настоящее пособие основано на материале двух специальных курсов, призванных существенно углубить некоторые разделы фундаментального курса «Уравнения в частных производных» для студентов- математиков классических университетов, связанные прежде всего с вопросами приложений интегральных уравнений к задачам математической
физики (анализ Фурье, начально-краевые задачи).
Предпросмотр: Интегральные уравнения и задача Штурма-Лиувилля .pdf (0,8 Мб)
СибЖВМ - единственный общероссийский журнал по вычислительной математике, издающийся за Уралом с привлечением авторов и рецензентов со всего СНГ.Основные направления журнала:- вычислительная математика;- математическое моделирование;- прикладная информатика;- автоматизация научных и прикладных исследований.Статьи публикуются на русском и английском языках, в зависимости от языка оригинала.
Предпросмотр: Сибирский журнал вычислительной математики №2 2016.pdf (0,3 Мб)
Автор: Сабитов К. Б.
М.: Лаборатория знаний
В книге дан вывод уравнений математической физики, приведены классические постановки основных задач, аналитические методы их решения, представлены обобщенные по Соболеву решения краевых задач для уравнений эллиптического, гиперболического и параболического типов, вариационный и галеркинский методы решения краевых задач, методы интегральных преобразований, возмущений, автомодельных решений и конечных разностей решения краевых задач уравнений математической физики. В отличие от известных учебников данное пособие содержит новый материал по уравнениям
смешанного типа, моделирующим околозвуковые течения.
Предпросмотр: Уравнения математической физики учебник для вузов в 2 ч. Ч. 2.pdf (0,3 Мб)
Автор: Кащенко
ЯрГУ
Изложена теория устойчивости решений линейных уравнений второго порядка с периодическими коэффициентами, базирующаяся на теории зон устойчивости A.M. Ляпунова. В качестве приложений асимптотическими методами исследованы вопросы устойчивости для широких классов регулярно и сингулярно возмущенных уравнений, в том числе уравнений с точками поворота. Рассмотрены классические вопросы построения функции Грина и вывода асимптотических законов распределения собственных значений периодической и антипериодической краевых задач. Учебное пособие по дисциплине „Дифференциальные уравнения" (блок ОПД) предназначено студентам специальности 010100 Математика и 010200 Прикладная математика и информатика очной формы обучения.
Предпросмотр: Устойчивость уравнений второго порядка с периодическими коэффициентами Учебное пособие.pdf (0,4 Мб)
Воронеж
В данном пособии даются необходимые первоначальные сведения о метрических пространствах, линейных нормированных пространствах и пространствах со скалярным произведением. Рассматриваются простейшие свойства отображений этих пространств. Предложенный в пособии материал устанавливает терминологию функционального анализа и базируется на знаниях и навыках, которыми студенты математических специальностей овладевают к четвертому семестру обучения.
Предпросмотр: Функциональные пространства. Вводный курс .pdf (1,2 Мб)
Автор: Ширяева С. О.
ЯрГУ
Книга посвящена описанию и применению эффективного метода решения векторных краевых задач гидродинамики вязкой жидкости, основанного на представлении искомого векторного поля в виде суперпозиции трех более простых векторных полей: одного потенциального и двух вихревых, получаемых действием трех взаимно ортогональных векторных дифференциальных операторов на три различных скалярных поля, задача отыскания которых существенно проще исходной.
Предпросмотр: Скаляризация векторных краевых задач гидродинамики монография.pdf (0,8 Мб)
Автор: Кащенко
ЯрГУ
Изложена теория устойчивости решений линейных уравнений второго порядка с периодическими коэффициентами, базирующаяся на теории зон устойчивости A.M. Ляпунова. В качестве приложений асимптотическими методами исследованы вопросы устойчивости для широких классов регулярно и сингулярно возмущенных уравнений, в том числе уравнений с точками поворота. Рассмотрены классические вопросы построения функции Грина и вывода асимптотических законов распределения собственных значений периодической и антипериодической краевых задач.
Предпросмотр: Устойчивость уравнений второго порядка с периодическими коэффициентами Учебное пособие.pdf (0,4 Мб)
Автор: Копытин Игорь Васильевич
Издательский дом ВГУ
Цель учебного пособия, предназначенного для студентов 4–5 курсов специальности физика, оказать помощь в освоении квантовой
теории углового момента и выработать практические навыки по использованию математического аппарата алгебры угловых моментов и соответствующего справочного материала в самостоятельных расчетах.
Это достигается, с одной стороны, подробным теоретическим рассмотрением основ изучаемых вопросов, с другой включением в качестве необходимого дополнения значительного количества примеров и задач.
Предпросмотр: Введение в алгебру угловых моментов. Ч. 2.pdf (0,5 Мб)
СибЖВМ - единственный общероссийский журнал по вычислительной математике, издающийся за Уралом с привлечением авторов и рецензентов со всего СНГ.Основные направления журнала:- вычислительная математика;- математическое моделирование;- прикладная информатика;- автоматизация научных и прикладных исследований.Статьи публикуются на русском и английском языках, в зависимости от языка оригинала.
Предпросмотр: Сибирский журнал вычислительной математики №2 2021.pdf (0,1 Мб)
Сиб. федер. ун-т
В данной монографии рассматриваются аналитические решения для
упрощенных моделей гидрофизики. Описаны новые классы аналитических
решений стационарного движения однородной и неоднородной жидкости.
Рассматриваются постоянные и переменные коэффициенты вертикального
турбулентного обмена. Во всех случаях (движение в вертикальной плоскости, трехмерное течение, двухслойное течение) проводится оценка области, в которой решения для таких моделей ведут себя как решения для более простой модели Экмана, что позволяет уточнить область применимости последней.
Предпросмотр: Аналитические решения для задач стационарного ветрового движения жидкости.pdf (0,3 Мб)
Автор: Болотина Н. А.
Волгогр. гос. архит.-строит. ун-т
Теоретический материал пособия содержит определения основных понятий, формулы, уравнения. Приводятся доказательства теорем, вывод основных формул курса. Наиболее трудные вопросы теории для лучшего усвоения сопровождаются раскрытием их содержания (без доказательств). Наличие рисунков поможет студентам лучше разобраться в ма-
териале, более основательно усвоить соответствующие темы и разделы курса. Решения
примеров и задач, приведенные в конце каждой главы, рассчитаны на прочное закрепление изучаемого материала и предназначены для самостоятельной работы студентов. Приведен библиографический список, в приложении содержатся вопросы для самопроверки и
подготовки к зачетам и экзаменам.
Предпросмотр: Высшая математика учебно-практическое пособие (2012).pdf (0,9 Мб)
Издательский дом Воронежского государственного университета
Настоящее учебно-методическое пособие содержит введение в теорию
рядов Фурье в линейном пространстве со скалярным произведением, а также в теорию тригонометрических рядов Фурье.
Пособие предназначено прежде всего для студентов 2 и 3 курсов факультета прикладной математики, информатики и механики. Оно будет полезно при проведении лекционных и практических занятий по дисциплинам «Математический анализ» и «Уравнения математической физики».
Предпросмотр: Ряды Фурье.pdf (0,8 Мб)
Автор: Аникин А. Ю.
М.: Изд-во МГТУ им. Н.Э. Баумана
Изложены основы векторного анализа — скалярные и векторные поля на плоскости и в пространстве, операции над этими полями и связи между ними, а также наиболее важные интегральные теоремы теории поля (Грина, Гаусса—Остроградского и Стокса). Разобраны примеры разной степени сложности, в частности, все задания типового расчета по теории поля. Приведены задачи для самостоятельного решения с ответами и указаниями.
Предпросмотр: Теория поля.pdf (0,4 Мб)
Автор: Сибуя Митио
ДМК Пресс, Додэка-XXI
Девочки Рика, Фумика и Эрина организовали рок-группу и хотят выступить на фестивале, но никак не найдут вокалиста. А тут ещё контрольная по математике, с которой у Фумики проблемы. Умница Эрина готова помочь подруге и объяснить сложные математические понятия на примере звуков и преобразования Фурье. Чистый звук — это простая волна. Любой сложный звук получается смешением чистых звуков. Преобразование Фурье как раз и позволяет разложить любой звук на гармонические составляющие и найти частотный спектр. Вместе с Эриной, Рикой и Фумикой вы узнаете о том: — что волны бывают продольными и поперечными, и у волн есть частота и амплитуда, — как связана единичная окружность с синусом и косинусом, и что такое угловая частота, — что такое интеграл и почему он может быть определённым, а производная нет, — как складывать, вычитать и умножать функции, — что такое ортогональность функций, — что такое ряды Фурье, синтез функций и преобразование Фурье. Вы увидите, как анализ Фурье помог девочкам найти вокалиста и выиграть одно принципиальное пари. Если у вас голова идёт кругом от математики и вас пугают такие слова, как тригонометрия, производные и интегралы, то присоединяйтесь к Рике, Фумике и Эрине.
Предпросмотр: Занимательная математика. Анализ Фурье манга.pdf (0,3 Мб)
Автор: Неделько С. В.
Изд-во НГТУ
Учебное пособие предназначено студентам технических факультетов, в программе обучения которых содержится тема «Ряды Фурье.
Преобразование Фурье». Авторами предложено доступное изложение
этой темы, достаточное для усвоения ее студентами нематематических специальностей. В пособии сначала дается теоретический материал с пояснениями и примерами, а затем приводятся условия задач типового расчета.
Предпросмотр: Ряды и преобразование Фурье. Специальные главы математического анализа.pdf (0,3 Мб)
Автор: Тверская Е. С.
М.: Изд-во МГТУ им. Н.Э. Баумана
Методические указания содержат краткий теоретический материал,
необходимый для выполнения домашнего задания по курсу «Уравнения математической физики» Подробно разобраны примеры решения
задач, а также приведены задачи для самостоятельной работы и условия домашнего задания.
Предпросмотр: Решение краевых задач для уравнения Лапласа.pdf (0,1 Мб)
Автор: Галкин С. В.
М.: Изд-во МГТУ им. Н.Э. Баумана
Рассмотрены неопределенный и определенный интегралы, несобственные интегралы, приложения определенного интеграла, а также основные уравнения первого порядка, способы снижения порядка дифференциальных уравнений, линейные уравнения второго и высшего порядков с постоянными и переменными коэффициентами. Приведены основные теоремы линейной теории, примеры решения уравнений с постоянными коэффициентами на метод подбора формы частного решения и метод вариации. Рассмотрены системы дифференциальных уравнений, основы теории устойчивости, а также поведение траекторий систем в окрестности точек покоя на примерах систем уравнений с двумя и тремя переменными. Изложены приближенные методы решения систем дифференциальных уравнений.
Предпросмотр: Интегральное исчисление и дифференциальные уравнения.pdf (0,3 Мб)
Автор: Попов В. С.
М.: Изд-во МГТУ им. Н.Э. Баумана
Рассмотрены методы решения задач на экстремум (локальный, условный) функции многих переменных и нахождения наибольших и наименьших значений таких функций. В каждом разделе приведены краткие теоретические сведения и формулы, необходимые для решения задач.
Предпросмотр: Задачи на экстремум функции многих переменных.pdf (0,1 Мб)
Автор: Безверхний Н. В.
М.: Изд-во МГТУ им. Н.Э. Баумана
В методических указаниях дано описание предусмотренных учебным планом МГТУ им. Н Э. Баумана приемов и задач, связанных с вычислением кратных интегралов. Приведен справочный материал, содержащий основные определения и формулировки теорем. Даны подробные решения задач со ссылками на нужные формулы, предложены задачи для самопроверки. Рассмотрены приложения кратных интегралов к задачам механики.
Предпросмотр: Кратные интегралы.pdf (0,1 Мб)
Автор: Игнатушина Инесса Васильевна
Южный Урал
Настоящее пособие адресовано студентам дневного и заочного
отделений, обучающимся по направлениям: 44.03.01 Педагогическое
образование (профили Математика, Математика и информатика,
Математика и физика), 02.03.03 Математическое обеспечение и
администрирование информационных систем, 01.03.04 Прикладная
математика, при изучении теории функций нескольких переменных.
Оно составлено в соответствии с программой этого курса. Вначале
сообщаются краткие теоретические сведения по каждому из разделов.
Затем приводятся примеры типовых заданий и демонстрируется их
решение.
Предпросмотр: ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ И ТИПОВЫЕ ЗАДАНИЯ ПО РАЗДЕЛУ «ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ».pdf (0,2 Мб)
Автор: Веретенников В. Н.
М.: Директ-Медиа
В учебном пособии предпринята попытка реализовать идею изложения дисциплины высшая математика в виде компактного пособия-конспекта, содержащего, тем не менее, весь излагаемый на лекциях материал. Уровень подробности доказательств рассчитан на студента, активно работающего на лекциях. После изложения каждой темы выделены базисные понятия, основные задачи, базисные методы решения основных задач. Дан перечень умений и навыков, которыми должен владеть студент, изучивший курс.
Предпросмотр: Обыкновенные дифференциальные уравнения учебное пособие.pdf (0,5 Мб)