
Свободный доступ

Ограниченный доступ

Уточняется продление лицензии
Автор: Долгарев
М.: ПРОМЕДИА
Установлена определяемость метрической функции поверхности 3-мерного пространства-времени Галилея символами Кристоффеля, а значит, установлена определяемость и первой квадратичной формы поверхности символами Кристоффеля. Приведены примеры получения метрической функции по заданным символам Кристоффеля. Поверхности являются изометричными только в случае, если у них одни и те же символы Кристоффеля. Указаны поверхности, определяемые символами Кристоффеля, и поверхности, для которых не существует изометричных (неизгибаемость поверхностей). Рассмотрен пример класса поверхностей пространства Галилея с евклидовой метрической функцией. Получено выражение полной кривизны поверхности через символы Кристоффеля.
Автор: Поздняков
М.: Изд-во МГТУ им. Н.Э. Баумана
Рассмотрены направления и методы реализации компьютерных технологий в учебном процессе на примере отдельной кафедры, готовящей специалистов в области транспортного машиностроения. Приведены содержание и структура курсов, цель которых — формирование у студентов профессиональных навыков в выполнении проектной и конструкторской документации с использованием вычислительной техники.
Изд-во НГТУ
Пособие содержит индивидуальные задания по «Линейной алгебре» по темам: «Линейные операторы», «Квадратичные формы», «Кривые второго порядка».
Адресовано студентам НГТУ всех направлений и специальностей, в учебных планах которых есть дисциплина «Линейная алгебра», и представляет собой набор индивидуальных расчетно-графических заданий.
Предпросмотр: Индивидуальные задания по линейной алгебре .pdf (0,3 Мб)
О журнале
Журнал «Вестник Томского государственного университета. Математика и механика» создан с целью
развития фундаментальных и прикладных исследований в области математики и механики,
получения и распространения передовых знаний и информации в данных областях,
интеграции интеллектуального потенциала с ведущими российскими и зарубежными центрами высшего образования, науки и высоких технологий;
поддержки и развития научных школ в области математики и механики
Предпросмотр: Вестник Томского государственного университета. Математика и механика №3 2017.pdf (0,6 Мб)
О журнале
Журнал «Вестник Томского государственного университета. Математика и механика» создан с целью
развития фундаментальных и прикладных исследований в области математики и механики,
получения и распространения передовых знаний и информации в данных областях,
интеграции интеллектуального потенциала с ведущими российскими и зарубежными центрами высшего образования, науки и высоких технологий;
поддержки и развития научных школ в области математики и механики
Предпросмотр: Вестник Томского государственного университета. Математика и механика №4 2016.pdf (0,7 Мб)
О журнале
Журнал «Вестник Томского государственного университета. Математика и механика» создан с целью
развития фундаментальных и прикладных исследований в области математики и механики,
получения и распространения передовых знаний и информации в данных областях,
интеграции интеллектуального потенциала с ведущими российскими и зарубежными центрами высшего образования, науки и высоких технологий;
поддержки и развития научных школ в области математики и механики
Предпросмотр: Вестник Томского государственного университета. Математика и механика №3 2016.pdf (0,7 Мб)
Автор: Шарикян Ю. Э.
М.: Изд-во МГТУ им. Н.Э. Баумана
Методические указания написаны в помощь студентам, выполняющим домашнее задание по начертательной геометрии. Рассмотрены общие схемы и принципы решения задач, требования к оформлению домашнего задания. Приведены вопросы для проработки учебного материала перед защитой домашнего задания.
Предпросмотр: Выполнение домашнего задания по начертательной геометрии.pdf (0,4 Мб)
М.: ВАКО
В пособии представлены контрольно-измерительные материалы (КИМы) по геометрии для 11 класса – тесты в формате заданий ЕГЭ, а также самостоятельные и контрольные работы по всем изучаемым темам. Ко всем заданиям приведены ответы. Предлагаемый материал позволяет проводить проверку знаний, используя различные формы контроля.
Предпросмотр: Контрольно-измерительные материалы. Геометрия. 11 класс.pdf (0,1 Мб)
Автор: Долгарев
М.: ПРОМЕДИА
На основе коэффициентов квадратичных форм поверхности одулярного галилеева пространства с сибсоном (единственным 3-мерным нильпотентным одулем Ли) составлена система дифференциальных уравнений с частными производными, решение которой приводит к определению поверхности.
Автор: Долгарев
М.: ПРОМЕДИА
Методами галилеевой геометрии решены некоторые системы второго порядка обыкновенных дифференциальных уравнений. Определены галилеевы кривизны евклидовых кривых и галилеевы квадратичные формы евклидовых поверхностей. Приведены примеры отыскания кривых и поверхностей по галилеевым кривизнам и коэффициентам галилеевых квадратичных форм соответственно. Указана галилеева связность для евклидовых поверхностей, позволяющая находить галилееву метрическую функцию евклидовой поверхности. Галилеевыми методами решена задача И. Ньютона - найдены траектории движения материальной точки двух и трех степеней свободы по заданному 2-мерному полю ускорений движения.
Автор: Коломыцева
М.: ПРОМЕДИА
Даются достаточные условия существования счетного множества обобщенных втулочных связей, совместимых с нетривиальными ARG-деформациями поверхностей положительной внешней кривизны с краем в римановом пространстве при заданном коэффициенте рекуррентности.
Автор: Долгарев
М.: ПРОМЕДИА
Операциями над тройками действительных чисел с двумя ведущими компонентами вводится 3-мерный растран, называемый W-растраном. Получено представление W-растрана матрицами и аффинными преобразованиями. Найден генетический код W-растрана. Определена галилеева норма на W-растране с 2-мерным временем. Найдена формула дифференцирования растранных функций. В пространстве с W-растраном получены уравнения прямых и двух видов параллельных прямых.
Автор: Денисова
Рассматривается алгоритм распределения солнечной энергии на поверхности приемника концентрирующей системы. Изложен принцип построения изолиний энергии на плоском приемнике. Предложена модель концентрирующей системы с отражателем в виде поверхности вращения и плоским приемником с одноосевым слежением за Солнцем
Автор: Петлина Таисия Петровна
РИЦ СГСХА
Методические указания содержат задания и рекомендации для выполнения контрольных работ по разделу начертательной геометрии с примерами их выполнения, составленными в соответствии с рабочей программой дисциплины «Начертательная геометрия и инженерная графика».
Предпросмотр: Начертательная геометрия.pdf (0,9 Мб)
Автор: Романова Г. Н.
КНИТУ
Содержит краткие теоретические сведения, сопровождаемые примерами и заданиями для самостоятельной работы по основным разделам высшей математики. Адресовано студентам бакалаврской подготовки и специалистам, обучающимся по направлениям: 08.03.01 «Строительство», 14.03.01 «Ядерная энергетика и теплофизика», 15.03.02 «Технологические машины и оборудование», 16.03.03 «Холодильная, криогенная техника и системы», 18.03.01 «Химическая технология», 22.03.01 «Материаловедение и технологии материалов», 29.03.04 «Технология художественной обработки материалов», 35.03.02 «Технология лесозаготовительных и деревоперерабатывающих производств».
Предпросмотр: Математика в таблицах учебное пособие в 3 ч. Ч.1.pdf (0,6 Мб)
Автор: Блискавка
М.: ПРОМЕДИА
Приближенные варианты решения классических задач.
РИО СамГАУ
Методические рекомендации предназначены для самостоятельного выполнения расчетно-графической работы по дисциплине «Начертательная геометрия и инженерная графика». Для обучающихся по направлению под-готовки 35.03.06 Агроинженерия. Могут быть полезны студентам направ-лений обучения: 23.03.03 Эксплуатация транспортно-технологических ма-шин и комплексов, 44.03.04 Профессиональное обучение (по отраслям).
Предпросмотр: Начертательная геометрия и инженерная графика методические рекомендации .pdf (1,2 Мб)
Автор: Шелаев
М.: ПРОМЕДИА
Геометрическая модель обобщенного золотого сечения.
Автор: Дарбу Жан Гастон
М.: Институт компьютерных исследований
Данное издание представляет собой второй том монументального труда выдающегося французского математика Ж. Г. Дарбу «Лекции по общей теории поверхностей», который содержит систематическое изложение результaтoв, относящихся к теории поверхностей и теории криволинейных координат. Кроме собственных результатов, он изложил и результаты исследований по дифференциальной геометрии кривых и поверхностей за 100 лет. Этот труд является итогом лекций, которые автор читал в Сорбонне в течение 1882-1885 годов и целью которых был поиск новых приложений теории уравнений в частных производных, такой обширной и так мало изученной. Второй том состоит из двух частей (книг). В первой части речь идет о конгруэнциях и о линейных уравнениях в частных производных. Практически вся эта часть посвящена развитию идей математического анализа, которые позднее почти сразу найти применение при изучении двух важных вопросов: бесконечно малой деформации произвольной поверхности и поиска поверхностей, допускающих данное сферическое представление. Во второй части речь идет о линиях пересечения с поверхностями.
Предпросмотр: Лекции по общей теории поверхностей и геометрические приложения анализа бесконечно малых. Том 2 Конгруенции и линейные уравнения в частных производных. Линии на поверхностях.pdf (0,1 Мб)
Автор: Гаврилова Н. Ф.
М.: ВАКО
В данном пособии учитель найдет все, что необходимо для подготовки к урокам: подробные поурочные разработки, методические советы и рекомендации, тексты самостоятельных и контрольных работ, тестовые задания, дополнительные задачи по каждой теме, задачи повышенной сложности. Особенностью пособия является дифференцированный подход к планированию, позволяющий проводить уроки в классах разного профиля и уровня подготовки. Издание содержит справочные материалы, обобщающие таблицы и карточки для индивидуальной работы. Пособие адресовано прежде всего учителям, работающим с учебным комплектом Л.С. Атанасяна и др. (М.: Просвещение). Полноценно может использоваться практически со всеми учебниками для основной школы. Подходит к учебникам «Геометрия» в составе УМК Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева и др. 2014–2021 гг. выпуска.
Предпросмотр: Поурочные разработки по геометрии. 9 класс пособие для учителя (к УМК Л.С. Атанасяна и др. (М. Просвещение)).pdf (0,1 Мб)
изд-во СКФУ
Пособие подготовлено в соответствии с ФГОС ВО. В работе изложены основные математические понятия, теоремы и формулы следующих разделов дисциплины: «Линейная алгебра», «Векторная алгебра», «Аналитическая геометрия», «Основы математического анализа», «Комплексные числа». Уделено внимание применению и выбору соответствующего математического аппарата для решения задач. Приводится большое количество примеров.
Предпросмотр: Математика.pdf (0,5 Мб)
Автор: Долгарев
М.: ПРОМЕДИА
Траектории геометрических преобразований получены одулярным методом. Исследованы свойства траекторий преобразований. Получены поверхности траекторий, в частности одулярные поверхности траекторий, указаны их геодезические. Эти поверхности обладают собственной геометрией - одулярной, она отлична от внутренней геометрии поверхности. Одулярная поверхность траекторий, аналог аффинной плоскости, может иметь ненулевую гауссову кривизну.
Автор: Фоменко
М.: ПРОМЕДИА
Доказывается существование счетного множества коэффициентов рекуррентности ARG-деформаций поверхностей положительной внешней кривизны с краем в римановом пространстве при условии, что вдоль края поверхность подчинена обобщенной втулочной связи, для которой существуют нетривиальные ARG-деформации поверхностей.
Автор: Долгарев
М.: ПРОМЕДИА
Определен растран еще одного вида - 3-мерный V-растран, введено галилеево скалярное произведение на V-растране. Как и другие геометрии пространств с растраном, геометрия одулярного галилеева пространства с V-растраном некоммутативна. Для кривых определены кривизна и кручение, получены натуральные уравнения. Составлена система обыкновенных дифференциальных уравнений, коэффициентами которой являются заданные функции кривизны и кручения кривой, а решением являются компоненты растранных функций, описывающих кривые с заданными функциями кривизны и кручения.
Автор: Долгарев
М.: ПРОМЕДИА
Статья посвящена методам получения траекторий движения и уравнениям кривых трехмерного галилеева пространства-времени по полю ускорения. Она использует методы 3-мерной геометрии Галилея пространства-времени. Рассмотрен ряд примеров.
Автор: Долгарев
М.: ПРОМЕДИА
Описано получение уравнений траектории движения точки по касательному и нормальному ускорению. Использованы методы 3-мерной геометрии Галилея.
М.: ВАКО
В пособии представлены контрольно-измерительные материалы (КИМы) по геометрии для 7 класса. Тесты тематически сгруппированы, соответствуют требованиям ФГОС. Структура КИМов аналогична структуре тестов в формате ЕГЭ, что позволит постепенно подготовить учащихся к работе с подобным материалом. В конце пособия предложены тексты самостоятельных и контрольных работ, а также ключи к тестам.
Предпросмотр: Контрольно-измерительные материалы. Геометрия. 7 класс.pdf (0,1 Мб)
М.: ВАКО
В пособии представлены контрольно-измерительные материалы (КИМы) по геометрии для 9 класса – тесты в формате заданий ЕГЭ, а также самостоятельные и контрольные работы по всем изучаемым темам. Ко всем заданиям приведены ответы. Предлагаемый материал позволяет проводить проверку знаний, используя различные формы контроля.
Предпросмотр: Контрольно-измерительные материалы. Геометрия. 9 класс.pdf (0,1 Мб)
Автор: Долгарев
М.: ПРОМЕДИА
На множестве 4-мерных кортежей действительных чисел определено два вида растранов размерности четыре посредством задания операций над кортежами. Определено скалярное произведение растов, получены формулы дифференцирования растранных функций. Проводится аналогия с кривыми 4-мерного пространства-времени Галилея, рассматриваются кривые в естественной параметризации, определяется три вида кривизн, получены формулы Френе и вычислительные формулы кривизн.
ФГБОУ ВПО Ижевская ГСХА
Практикум содержит задачи для аудиторной и самостоятельной работы студентов по разделам математических дисциплин: линейная алгебра и аналитическая геометрия, математический анализ.
Предпросмотр: Практикум по математике.pdf (0,2 Мб)
Автор: Шелаев
М.: ПРОМЕДИА
Соотношения гармонии в обобщенной геометрической модели золотых сечений и функций средних значений.
Журнал "Тонкие химические технологии" (прежнее название [2006-2014] "Вестник МИТХТ") выходит один раз в два месяца и публикует обзоры и статьи по актуальным проблемам химической технологии и смежных наук. Журнал основан в 2006 году. Учредителем журнала является Московская государственная академия тонкой химической технологии им. М.В. Ломоносова (МИТХТ), ныне Московский государственный университет тонких химических технологий имени М.В. Ломоносова. Журнал входит в Перечень ведущих рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертации на соискание ученой степени доктора (кандидата) наук. Журнал реферируется в международной базе данных Chemical Abstracts, входит в международный каталог периодических изданий Ulrich.
Под новым названием "Тонкие химические технологии" журнал "Вестник МИТХТ" выходит, начиная с 1-го выпуска 10-го тома за 2015 год.
Предпросмотр: Тонкие химические технологии №2 (0) 2024.pdf (0,3 Мб)
Автор: Шелаев
М.: ПРОМЕДИА
Геометрическая модель обобщенного золотого сечения.
Автор: Шелаев
М.: ПРОМЕДИА
Геометрическая модель инвариантных сечений, анализ нетривиальной закономерности изменения модуля электростатического поля вдоль эквипотенциальной линии.
Журнал "Тонкие химические технологии" (прежнее название [2006-2014] "Вестник МИТХТ") выходит один раз в два месяца и публикует обзоры и статьи по актуальным проблемам химической технологии и смежных наук. Журнал основан в 2006 году. Учредителем журнала является Московская государственная академия тонкой химической технологии им. М.В. Ломоносова (МИТХТ), ныне Московский государственный университет тонких химических технологий имени М.В. Ломоносова. Журнал входит в Перечень ведущих рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертации на соискание ученой степени доктора (кандидата) наук. Журнал реферируется в международной базе данных Chemical Abstracts, входит в международный каталог периодических изданий Ulrich.
Под новым названием "Тонкие химические технологии" журнал "Вестник МИТХТ" выходит, начиная с 1-го выпуска 10-го тома за 2015 год.
Предпросмотр: Тонкие химические технологии №3 (0) 2024.pdf (0,3 Мб)