Национальный цифровой ресурс Руконт - межотраслевая электронная библиотека (ЭБС) на базе технологии Контекстум (всего произведений: 617105)
Контекстум
  Расширенный поиск
519.6

Вычислительная математика, численный анализ


← назад
Результаты поиска

Нашлось результатов: 855 (1,64 сек)

Свободный доступ
Ограниченный доступ
Уточняется продление лицензии
651

Волчков, В.П. ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ АЛГОРИТМОВ ЛИНЕЙНОГО ПРЕКОДИРОВАНИЯ В СИСТЕМАХ MIMO / В.П. Волчков, A.А. Шурахов // Электросвязь .— 2012 .— №5 .— С. 15-16 .— URL: https://rucont.ru/efd/428411 (дата обращения: 05.09.2025)

Автор: Волчков

Технология MIMO (применение нескольких антенн на передающей и приемной сторонах) позволяет существенно улучшить характеристики беспроводных систем связи в условиях замираний. Это улучшение связано с дополнительными возможностями по пространственному мультиплексированию и разнесению передаваемых информационных символов, что позволяет повысить пропускную способность и помехоустойчивость системы связи.

652

Орлов, В.А. О РЕАЛИЗАЦИИ КОНЕЧНОЗНАЧНЫХ ОТОБРАЖЕНИЙ / В.А. Орлов // Инженерный журнал: наука и инновации .— 2012 .— №1 .— URL: https://rucont.ru/efd/274768 (дата обращения: 05.09.2025)

Автор: Орлов
М.: Изд-во МГТУ им. Н.Э. Баумана

Рассмотрены вопросы реализации конечнозначных функций схемами из функциональных элементов. Предложено семейство k-значных базисов и показана их полнота. Для этих базисов построены методы синтеза схем из функциональных элементов, обеспечивающие асимптотически наилучшие оценки.

653

Лабораторный практикум по численным методам (Методические материалы)

ГГПИ

Методические материалы предназначены для организации лабораторных занятий и самостоятельной работы студентов физико-математических факультетов при изучении численных методов. Они предполагают использование пакета программных средств (ППС), разработанного авторами на кафедре информатики и математического анализа в Глазовском педагогическом институте.

Предпросмотр: Лабораторный практикум по численным методам (Методические материалы)– 2-е изд..pdf (0,1 Мб)
654

№1 [Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика, 2014]

Журнал является периодическим научным изданием, которое содержит публикации в форме статей и кратких сообщений по основным направлениям научно- исследовательской работы факульета ВМиК МГУ: вычислительным методам прикладной математики и математическому моделированию, исследованию операций и математическим методам прогнозирования, приложениям теории вероятностей и математической статистики, математическим методам исследования нелинейных управляющих систем и процессов, теории и методам системного программирования, программному и математическому обеспечению вычислительных машин и сетей

Предпросмотр: Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика №1 2014.pdf (1,0 Мб)
655

Жумабаев, М.Ж. Осесимметричная задача слоистых конструкций / М.Ж. Жумабаев, Х.С. Абдуллаева // Актуальные проблемы современной науки .— 2011 .— №3 .— С. 135-139 .— URL: https://rucont.ru/efd/253658 (дата обращения: 05.09.2025)

Автор: Жумабаев
М.: ПРОМЕДИА

Методом конечных элементов изучается напряженно-деформированное состояние оболочки с заполнителем.

656

Бойков, И.В. ПОПЕРЕЧНИКИ КОЛМОГОРОВА И НЕНАСЫЩАЕМЫЕ МЕТОДЫ АППРОКСИМАЦИИ КЛАССОВ ФУНКЦИЙ, ОПРЕДЕЛЯЕМЫХ РЕШЕНИЯМИ УРАВНЕНИЙ МАТЕМАТИЧЕСКОЙ ФИЗИКИ (ЧАСТЬ II. ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ) / И.В. Бойков // Известия высших учебных заведений. Поволжский регион. Физико-математические науки .— 2014 .— №3 .— С. 5-21 .— URL: https://rucont.ru/efd/552628 (дата обращения: 05.09.2025)

Автор: Бойков

Актуальность и цель. В статье К. И. Бабенко «О некоторых задачах теории приближений и численного анализа»1 среди ряда важных проблем вычислительной математики были сформулированы две проблемы: 1) вычисление поперечников Колмогорова и Бабенко на классе Q(Ω,M)(класс Q(Ω,M)со-

657

№10 [Оптика атмосферы и океана, 2011]

Журнал посвящен проблемам атмосферной оптики, включая спектроскопию, турбулентность, нелинейные явления в атмосфере и океане. Кроме того, к основным направлениям журнала относятся дистанционное зондирование атмосферы и подстилающей поверхности с космических, наземных, судовых и самолетных станций; исследования, связанные с климатом и экологией, а также созданием, испытанием и применением приборов и методов для таких исследований, включая обработку получаемой информации (обратные задачи, передача изображений, адаптивная оптика, лазеры, лидары.

Предпросмотр: Оптика атмосферы и океана №10 2011.pdf (5,5 Мб)
658

Куприянова, С.Н. Метод интегральных уравнений для неоднородного волновода с нелинейным заполнением по закону Керра / С.Н. Куприянова, Ю.Г. Смирнов // Известия высших учебных заведений. Поволжский регион. Физико-математические науки .— 2008 .— №4 .— С. 26-31 .— URL: https://rucont.ru/efd/269794 (дата обращения: 05.09.2025)

Автор: Куприянова
М.: ПРОМЕДИА

Рассмотрен случай распространения электромагнитных волн в цилиндрическом диэлектрическом волноводе. Задача решается в цилиндрической системе координат, причем диэлектрическая проницаемость внутри волновода предполагается зависящей от радиальной компоненты электромагнитного поля по закону Керра.

659

Занимательная математика. Дифференциальные уравнения манга

Автор: Минору Сато
М.: ДМК Пресс

В этой манге интересно и увлекательно рассказано о совсем непростой теме — дифференциальных уравнениях. Читатель вместе со школьницей Мидзуки, второкурсником Нояма Дайчи и Богиней чисел узнает, зачем нужны уравнения в обычной жизни, как они помогут запустить планер, предсказать погоду, почему остывает кофе и как мир математики связан с миром реальных людей и дел. Простота изложения помогает следить за занимательным сюжетом, суть которого в том, что богиня цифр помогла Нояме и Мидзуки понять и полюбить мир чисел. Вы узнаете о разных способах решения уравнения, про уравнения Бернулли и о том, почему на Хоккайдо увеличилась численность оленей эдзо и как это предсказать. Оказывается, изменение температуры тела при его охлаждении, вычисление скорости ракеты, изменение интенсивности ощущений в зависимости от раздражителя и другие явления также описываются похожими дифференциальными уравнениями. Разве это не удивительно, что такие разные явления реального мира в мире математики подчиняются моделям одного вида? Если бы не было дифференциальных уравнений, из-за ветра рушились бы висячие мосты, но инженеры делают специальные расчеты колебаний.

Предпросмотр: Занимательная математика. Дифференциальные уравнения манга (1).pdf (0,8 Мб)
660

Метод Пенлеве и его приложения [монография] The Painleve Handbook

Автор: Конт Робер
М.: Институт компьютерных исследований

Нелинейные дифференциальные уравнения встречаются не только в математике, но и во многих областях физики, химии и биологии. Предлагаемая монография знакомит читателя с методами решения этих уравнений в явном виде. Первостепенная цель - научить читателя оценивать свои шансы на успех, не имея никаких априорных представлений о решении. Для этого используется так называемый тест Пенлеве - мощный алгоритм, подробно рассматриваемый в книге. Если нелинейное дифференциальное уравнение проходит тест Пенлеве, то оно считается интегрируемым. Если же уравнение не проходит тест Пенлеве, то система является неинтегрируемой или даже хаотической. В этом случае, однако, по-прежнему можно найти ее решения. Описанные методы иллюстрируются, главным образом, примерами из физики. К ним относятся: нелинейное уравнение Шредингера, уравнение Кортевега-де Фриза, гамильтонианы Эно-Эйлеса. Все они являются интегрируемыми. К неинтегрируемым же примерам относятся: комплексное уравнение Гинзбурга-Ландау, уравнение Курамото-Сивашинского, реакционно-диффузионная модель Колмогорова-Петровского-Пискунова (КПП), модель атмосферной циркуляции Лоренца и космологическая модель IX по Бьянки.

Предпросмотр: Метод Пенлеве и его приложения.pdf (0,3 Мб)
661

№2 [Сибирский журнал вычислительной математики, 2012]

СибЖВМ - единственный общероссийский журнал по вычислительной математике, издающийся за Уралом с привлечением авторов и рецензентов со всего СНГ.Основные направления журнала:- вычислительная математика;- математическое моделирование;- прикладная информатика;- автоматизация научных и прикладных исследований.Статьи публикуются на русском и английском языках, в зависимости от языка оригинала.

Предпросмотр: Сибирский журнал вычислительной математики №2 2012.pdf (0,2 Мб)
662

№4 [Вопросы атомной науки и техники. Серия: Математическое моделирование физических процессов. , 2023]

Издается с 1978г. В данной серии публикуются оригинальные работы, обзоры и краткие сообщения по следующим научным направлениям: математическое моделирование физических процессов и свойств веществ, численные и аналитические методы решения прикладных задач математической физики и механики сплошной среды; вычислительная математика и применение математических методов и электронно-вычислительной техники в научных исследованиях; вопросы программирования; вопросы структуры алгоритмов и программ для современных ЭВМ; вопросы создания вычислительных комплексов и сетей ЭВМ. Главный редактор - д-р ф.-м. наук Р.М.Шагалиев

Предпросмотр: Вопросы атомной науки и техники. Серия Математическое моделирование физических процессов. №4 (0) 2023.pdf (0,2 Мб)
663

МОНОТОННЫЙ МЕТОД ЧАСТИЦ ДЛЯ МОДЕЛИРОВАНИЯ ДВУМЕРНЫХ ГАЗОДИНАМИЧЕСКИХ ТЕЧЕНИЙ / Ю.В. Янилкин [и др.] // Труды РФЯЦ-ВНИИЭФ .— 2015 .— №20 часть 1 .— С. 83-98 .— URL: https://rucont.ru/efd/556563 (дата обращения: 05.09.2025)

Автор: Янилкин

Описано развитие монотонного метода частиц для двумерных задач газовой динамики, реализованного в рамках комплекса программ ЭГАК. Приводятся алгоритмы взаимодействия частиц с компонентами, которые заданы без применения частиц, а также алгоритмы, позволяющие делать расчеты, используя частицы только в окрестности контактных границ

664

Численные методы. Теория, алгоритмы, программы учеб. пособие

Автор: Тарасов В. Н.
Изд-во ПГУТИ

Учебное пособие предназначено для студентов специальностей направления 230100 - Информатика и вычислительная техника.

Предпросмотр: Численные методы. Теория, алгоритмы, программы Учебное пособие.pdf (0,2 Мб)
665

Компьютерные технологии в практике математического моделирования. Ч. 2 учеб. пособие

Автор: Градов В. М.
М.: Изд-во МГТУ им. Н.Э. Баумана

Рассмотрены методы построения разностных схем для дифференциальных уравнений в частных производных и средства их компьютерной реализации применительно к различным задачам инженерного и научного содержания. Изложение методов дано с учетом их применения при разработке компьютерных программ на языках высокого уровня и доведено до конкретных рекомендаций по повышению эффективности создаваемых алгоритмов. Важное место в пособии отводится обсуждению использования в расчетной практике современных математических пакетов типа Matlab, приведены примеры использования данного пакета для реализации моделей, описываемых дифференциальными уравнениями в частных производных различных типов.

Предпросмотр: Компьютерные технологии в практике мат. моделирования. Ч. 2.pdf (0,3 Мб)
666

Применение численных методов для построения разностных моделей учеб. пособие

Автор: Семенистый В. В.
Ростов н/Д.: Изд-во ЮФУ

Учебное пособие написано для магистрантов первого курса обучения и является практической частью к лекционному курсу по численным методам. Построены разностные модели для задач о соударениях гибких пластин и описывающих электрическое состояние горизонтально-однородного турбулентного приземного слоя. Подбор задач для разностного решения уравнений математической физики позволяет более глубоко разобраться в основах численного моделирования.

Предпросмотр: Применение численных методов для построения разностных моделей .pdf (0,6 Мб)
667

Математическое моделирование процессов теплопроводности методом конечных элементов учеб. пособие

Автор: Савельева Инга Юрьевна
М.: Изд-во МГТУ им. Н.Э. Баумана

Приведены формулировки стационарных и нестационарных задач теплопроводности. Рассмотрены основные особенности построения численного решения этих задач в рамках конечно-элементной технологии.

Предпросмотр: Математическое моделирование процессов теплопроводности методом конечных элементов .pdf (0,6 Мб)
668

Символьные вычисления в Python. Основы работы с библиотекой SymPy учеб.-метод. пособие

Автор: Титов А. Н.
КНИТУ

Рассмотрены задачи по математическому анализу, вычислительной и прикладной математике, информационным технологиям и их реализация на языке Python. Описана технология работы с библиотекой SymPy, приведены необходимые теоретические сведения и формулы для решения рассмотренных задач. Для оценки уровня усвоения студентами пройденного материала предложены варианты заданий для самостоятельной работы.

Предпросмотр: Символьные вычисления в Python. Основы работы с библиотекой SymPy учебно-методическое пособие.pdf (0,4 Мб)
669

Численные методы: учебное пособие

Автор: Троицкая Ольга Николаевна
Северный (Арктический) федеральный университет имени М.В. Ломоносова

Содержание учебного пособия соответствует государственному стандарту подготовки специалистов по специальности 230401.65 «Прикладная математика», а также бакалавров по направлению подготовки 231300 «Прикладная математика». В пособии представлены основные численные методы решения задач алгебры, математического анализа, теории обыкновенных дифференциальных уравнений. Все методы иллюстрируются подробно разобранными примерами. Для самостоятельной работы студентов по каждой теме даны соответствующие упражнения.

Предпросмотр: Численные методы учебное пособие.pdf (1,2 Мб)
670

Математический анализ: интегральное исчисление : практикум. Направление подготовки 231300.62 – Прикладная математика. Профиль «Программное обеспечение и администрирование информационных систем». Бакалавриат

изд-во СКФУ

Практикум содержит планы практических занятий, включающие теоретическую и практическую части, задания, контрольные вопросы и литературу, способствует формированию общекультурных и профессиональных компетенций. Предназначен для студентов-бакалавров, обучающихся по направлению подготовки 231300.62 – Прикладная математика

Предпросмотр: Математический анализ интегральное исчисление практикум Направление подготовки 231300.62 – Прикладная математика. Профиль «Программное обеспечение и администрирование информационных систем». Бакалавриат.pdf (0,4 Мб)
671

Особенности построения и тестирования конечноэлементных СЛАУ для уравнения эллиптического типа учеб. пособие

Автор: Задорожный А. Г.
Изд-во НГТУ

В данном учебном пособии рассмотрены некоторые особенности построения и тестирования СЛАУ, получаемых при решении одномерных эллиптических краевых задач методом конечных элементов. Пособие может быть рекомендовано для подготовки студентов 3-го и 4-го курсов к практическим и курсовым заданиям по дисциплинам «Уравнения математической физики», «Метод конечных элементов» и «Численные методы».

Предпросмотр: Особенности построения и тестирования конечноэлементных СЛАУ для уравнения эллиптического типа.pdf (0,6 Мб)
672

Стаценко, В.П. ЧИСЛЕННОЕ И АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ СДВИГОВОГО ТУРБУЛЕНТНОГО ПЕРЕМЕШИВАНИЯ С ИСПОЛЬЗОВАНИЕМ k–ε МОДЕЛИ / В.П. Стаценко, Ю.В. Третьяченко, Ю.В. Янилкин // Вопросы атомной науки и техники. Серия: Теоретическая и прикладная физика. .— 2015 .— №4 .— С. 59-69 .— URL: https://rucont.ru/efd/559563 (дата обращения: 05.09.2025)

Автор: Стаценко

Построено численное решение системы обыкновенных дифференциальных уравнений, получающихся из уравнений k–ε модели для автомодельного режима задачи о сдвиговом турбулентном перемешивании. Проведено также численное моделирование задачи с использованием k–ε модели турбулентного перемешивания по коду ЭГАК на подробных сетках. Дано сравнение этих результатов с результатами 3D прямого численного моделирования и с экспериментальными данными

673

Численные методы решения задач диффузии метод. указания к компьютерному практикуму по курсу «Уравнения математической физики»

Автор: Титов К. В.
М.: Изд-во МГТУ им. Н.Э. Баумана

Справочно представлены основные методы численного решения обыкновенных дифференциальных уравнений и краевых задач. Механизм и эффективность работы этих методов выявляются в процессе выполнения компьютерного практикума. Это способствует формированию у студентов необходимой теоретической и практической базы знаний для последующего решения прикладных задач диффузии. Даны все необходимые рекомендации для проведения вычислительных работ на персональных компьютерах по численным методам решения некоторых задач математической физики. Приведены теоретический материал,необходимый для работы с электронной версией методических указаний, и условия типового расчета.

Предпросмотр: Численные методы решения задач диффузии.pdf (0,1 Мб)
674

Хвостов, М.Н. О ДОСТАТОЧНЫХ УСЛОВИЯХ РАЗРЕШИМОСТИ НЕСОБСТВЕННЫХ ЗАДАЧ ЛП 1-ГО РОДА ПОСЛЕ МАТРИЧНОЙ КОРРЕКЦИИ ИХ ДОПУСТИМОЙ ОБЛАСТИ ПО МИНИМУМУ ВЗВЕШЕННОЙ ЕВКЛИДОВОЙ НОРМЫ С УЧЕТОМ СТРУКТУРНЫХ ОГРАНИЧЕНИЙ / М.Н. Хвостов // Вестник Воронежского государственного университета. Серия: Физика. Математика .— 2015 .— №2 .— С. 149-166 .— URL: https://rucont.ru/efd/512030 (дата обращения: 05.09.2025)

Автор: Хвостов

рассмотрена проблема матричной коррекции пары взаимно двойственных несобственных задач линейного программирования (ЛП) с прямой несобственной задачей 1-го рода по минимуму взвешенной евклидовой нормы в случае. Причем заданы позиции элементов с запретом коррекции. Сформулированы и доказаны достаточные условия существования решения указанной проблемы, которые позволяют последовательно свести её к задаче матричной коррекции системы ограничений прямой ЛП, вспомогательной задаче минимизации с условием неотрицательности аргумента и, окончательно, к задаче безусловной минимизации почти всюду непрерывной и дифференцируемой функции. Получены аналитические формулы для вычисления градиента указанной функции. Приведены результаты решения модельной задачи средней размерности с разреженной матрицей коэффициентов, иллюстрирующие сходимость по аргументу и целевой функции, а также распределение относительных поправок элементов

675

Арушанян, О.Б. Об одном приближенном методе интегрирования обыкновенных дифференциальных уравнений / О.Б. Арушанян, Н.И. Волченскова, С.Ф. Залеткин // Вестник Московского университета. Серия 1. Математика. Механика .— 2013 .— №6 .— С. 45-48 .— URL: https://rucont.ru/efd/361178 (дата обращения: 05.09.2025)

Автор: Арушанян

Рассмотрен приближенный аналитический метод решения задачи Коши для нормальных систем обыкновенных дифференциальных уравнений. Метод основан на приближении решения частичными суммами смещенного ряда Чебышева. Коэффициенты ряда вычисляются с помощью итерационного процесса с использованием квадратурной формулы Маркова.

676

О ЗНАЧЕНИИ МАТРИЦ НАЧАЛЬНОГО ПРИБЛИЖЕНИЯ В АЛГОРИТМЕ ПОИСКА ОБОБЩЕННЫХ ВЗВЕШЕННЫХ МАТРИЦ ГЛОБАЛЬНОГО И ЛОКАЛЬНОГО МАКСИМУМА ДЕТЕРМИНАНТА / Н. А. Балонин, М. Б. Сергеев // Информационно-управляющие системы .— 2015 .— №6 .— doi: 10.15217/issn1684-8853.2015.6.2 .— URL: https://rucont.ru/efd/342310 (дата обращения: 05.09.2025)

Цель: показать значение матриц начального приближения, задающих структуру в задачах поиска ортогональных многоуровневых матриц глобально го и локального максимумов детерминанта. Методы: поиск матриц глобального и локального максимумов детерминанта ведется итерационной вычислительной процедурой, ориентированной на ми- нимизацию максимального абсолютного значения элементов ортогональной матрицы с предвычислением ее началь- ного приближения в заданной априори структурированной форме. Результаты: предложенный подход, учитывающий на начальном этапе вычислений структуру и симметрию, существенно повышает эффективность поиска ортогональных по строкам (столбцам) обобщенных взвешенных матриц. Показана целесообразность учета как явной, так и неявных симметрий матриц. Приведены примеры скрытых симметрий матриц и указаны связанные с ними преобразования, эквивалентные по отношению к значению детерминанта матрицы. Практическая значимость: обобщенные взве- шенные матрицы глобального и локального максимумов детерминанта ортогональны и имеют практическое значение в решении задач помехоустойчивого кодирования, сжатия и маскирования видеоинформации

677

РАЗНОСТНЫЕ СХЕМЫ РЕШЕНИЯ ЗАДАЧ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Бурятский государственный университет

В учебно-методическом пособии приведены краткие теоретические сведения и даны практические рекомендации по решению задач обыкновенных дифференциальных уравнений и уравнений в частных производных конечно-разностными методами. Пособие разработано для студентов Института математики и информатики.

Предпросмотр: РАЗНОСТНЫЕ СХЕМЫ РЕШЕНИЯ ЗАДАЧ МАТЕМАТИЧЕСКОЙ ФИЗИКИ.pdf (2,1 Мб)
678

Цветкович, Л. НЕВЫРОЖДЕННОСТЬ МАТРИЦ И СВОЙСТВО ДИАГОНАЛЬНОГО ПРЕОБЛАДАНИЯ / Л. Цветкович, В. Костич, Л.А. Крукиер // Известия высших учебных заведений. Северо-Кавказский регион. Естественные науки .— 2013 .— №3 .— С. 21-23 .— URL: https://rucont.ru/efd/426793 (дата обращения: 05.09.2025)

Автор: Цветкович

Диагональное преобладание в матрице является простым условием, обеспечивающим ее невырожденность. Свойства матриц, которые обобщают понятие диагонального преобладания, всегда очень востребованы. Они рассматриваются как условия типа диагонального преобладания и помогают определять подклассы матриц (типа H-матриц), которые при этих условиях остаются невырожденными. В данной работе строятся новые классы невырожденных матриц, которые сохраняют преимущества диагонального преобладания, но остаются вне класса H-матриц. Эти свойства особенно удобны, поскольку многие приложения приводят к матрицам из этого класса, и теория невырожденности матриц, которые не являются Н-матрицами, теперь может быть расширена.

679

Подольская, О.В. О нижних оценках сложности схем в базисе антицепных функций / О.В. Подольская // Вестник Московского университета. Серия 1. Математика. Механика .— 2013 .— №2 .— С. 19-25 .— URL: https://rucont.ru/efd/361109 (дата обращения: 05.09.2025)

Автор: Подольская

Антицепной функцией называется характеристическая функция антицепи в булевом кубе. Множество всех антицепных функций образует бесконечный полный базис. В работе изучается сложность реализации булевых функций схемами в этом базисе. Доказаны нижние оценки порядка корень из n для сложности реализации линейной функции, функции голосования и почти всех функций от n переменных.

680

Математические методы защиты информации: Методические указания Методические указания

ЯрГУ

В работе сформулированы основные идеи алгоритмов с открытым ключом. Наиболее известные из них подробно описаны. Особое внимание уделено электронной цифровой подписи как решению задач, связанных с аутентификацией документов. Указания предназначены для студентов, обучающихся по направлению 510200 Прикладная математика и информатика (дисциплина "Математические методы защиты информации", блок СД) очной формы обучения.

Предпросмотр: Математические методы зашиты информации Методические указания.pdf (0,5 Мб)
681

Интерполяция алгебраическими многочленами. Сплайн-интерполяция

Издательско-полиграфический центр Воронежского государственного университета

Учебно-методическое пособие подготовлено на кафедре математического моделирования математического факультета Воронежского государственного университета

Предпросмотр: Интерполяция алгебраическими многочленами. Сплайн-интерполяция .pdf (1,0 Мб)
682

Интерполяция алгебраическими многочленами. Сплайн-интерполяция

Издательско-полиграфический центр Воронежского государственного университета

Учебно-методическое пособие подготовлено на кафедре математического моделирования математического факультета Воронежского государственного университета

Предпросмотр: Интерполяция алгебраическими многочленами. Сплайн-интерполяция .pdf (0,9 Мб)
683

Ненасыщаемые кубатурные формулы вычисления гиперсингулярных интегралов // Известия высших учебных заведений. Поволжский регион. Физико-математические науки .— 2013 .— №3 .— С. 5-24 .— URL: https://rucont.ru/efd/270075 (дата обращения: 05.09.2025)

М.: ПРОМЕДИА

Гиперсингулярные интегралы в настоящее время находят все большие области применения – аэродинамика, теория упругости, электродинамика и геофизика. При этом их вычисление в аналитическом виде возможно лишь в весьма частных случаях. Поэтому приближенные методы вычисления гиперсингулярных интегралов являются актуальной задачей вычислительной математики. Этой задаче посвящено много работ. В частности, И. В. Бойковым и Ю. Ф. Захаровой опубликованы циклы работ по построению оптимальных методов вычисления гиперсингулярных интегралов. В 1975 г. в докладах АН СССР (т. 221, № 1) опубликована статья К. И. Бабенко, в которой он сообщил об открытии им принципиально новых – ненасыщаемых численных методах. Отличительной особенностью последних является способность автоматически подстраиваться под классы корректности решений рассматриваемых задач. Анализ известных квадратурных и кубатурных формул вычисления гиперсингулярных интегралов показал, что они являются насыщаемыми. Поэтому является актуальной задача построения ненасыщаемых алгоритмов вычисления гиперсингулярных и полигиперсингулярных интегралов. Этой задаче посвящена данная работа.

684

№9 [Оптика атмосферы и океана, 2019]

Журнал посвящен проблемам атмосферной оптики, включая спектроскопию, турбулентность, нелинейные явления в атмосфере и океане. Кроме того, к основным направлениям журнала относятся дистанционное зондирование атмосферы и подстилающей поверхности с космических, наземных, судовых и самолетных станций; исследования, связанные с климатом и экологией, а также созданием, испытанием и применением приборов и методов для таких исследований, включая обработку получаемой информации (обратные задачи, передача изображений, адаптивная оптика, лазеры, лидары.

Предпросмотр: Оптика атмосферы и океана №9 2019.pdf (0,2 Мб)
685

Формирование непротиворечивых множеств прецедентов для задачи распознавания вторичной структуры белка

Автор: Солодкин Дмитрий Леонидович
[Б.и.]

В данной работе решена задача построение представительной выборки белков из исходной экспериментальной базы. Таким образом, что из множества одинаковых белков, записанных в исходной базе несколько раз с некоторыми изменениями и неточностями, в представительную выборку отобран ровно 1 белок.

Предпросмотр: Формирование непротиворечивых множеств прецедентов для задачи распознавания вторичной структуры белка.pdf (0,2 Мб)
686

Сафаров, И.И. Распространение гармонических волн в пластинке переменной толщины / И.И. Сафаров, З.И. Болтаев // Известия высших учебных заведений. Поволжский регион. Физико-математические науки .— 2011 .— №4 .— С. 24-35 .— URL: https://rucont.ru/efd/269959 (дата обращения: 05.09.2025)

Автор: Сафаров
М.: ПРОМЕДИА

Построена сопряженная спектральная задача при условиях биортогональности для вязкоупругой пластинки с переменной толщиной. Сформулирована спектральная задача, описывающая распространение изгибных плоских волн в волноводе. Численные решения спектральных задач проводились на ЭВМ программным комплексом, основанным на методе ортогональной прогонки С. К. Годунова в сочетании с методом Мюллера.

688

№4 [Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика, 2017]

Журнал является периодическим научным изданием, которое содержит публикации в форме статей и кратких сообщений по основным направлениям научно- исследовательской работы факульета ВМиК МГУ: вычислительным методам прикладной математики и математическому моделированию, исследованию операций и математическим методам прогнозирования, приложениям теории вероятностей и математической статистики, математическим методам исследования нелинейных управляющих систем и процессов, теории и методам системного программирования, программному и математическому обеспечению вычислительных машин и сетей

Предпросмотр: Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика №4 2017.pdf (0,2 Мб)
689

Медведик, М.Ю. Восстановление диэлектрической проницаемости неоднородного тела, помещенного в прямоугольный волновод по коэффициенту прохождения и отражения / М.Ю. Медведик, Ю.Г. Смирнов // Известия высших учебных заведений. Поволжский регион. Физико-математические науки .— 2013 .— №1 .— С. 5-18 .— URL: https://rucont.ru/efd/270042 (дата обращения: 05.09.2025)

Автор: Медведик
М.: ПРОМЕДИА

Рассмотрены два итерационных метода определения диэлектрической проницаемости. Получены результаты, показывающие сходимость методов. Представлены графики зависимости значения диэлектрической проницаемости от числа итераций для тел сложной геометрической формы.

690

Кремлева, Л.В. Моделирование операций технологического проектирования с использованием искусственных нейронных сетей / Л.В. Кремлева, О.И. Бедердинова, А.Н. Елисеев // Вестник Северного (Арктического) федерального университета. Серия 'Естественные науки' .— 2016 .— № 3 .— С. 97-105 .— doi: 10.17238/issn2227-6572.2016.3.97 .— URL: https://rucont.ru/efd/512347 (дата обращения: 05.09.2025)

Автор: Кремлева

Приведено описание подхода к анализу конструкторско-технологической информации с помощью искусственной нейронной сети (ИНС) и классического алгоритма обратного распространения при ее обучении, на основе которого разработано программное обеспечение для создания, обучения и функционирования полносвязной ИНС произвольной топологии. Проанализированы технологические данные испытаний фрез для контурной обработки древесины, полученные с применением метода аппроксимации экспериментальных зависимостей регрессионными формулами. Описаны результаты численных экспериментов с использованием ИНС. При проведении первого эксперимента применялась полносвязная ИНС для комбинации «обрабатываемый материал – направление подачи», включающая 3 нейрона; при проведении второго эксперимента произведено обучение ИНС, включающей 6 нейронов. Оценена точность данных, полученных при помощи метода ИНС, в сравнении с классическими способами обработки и использования экспериментальных данных. Установлено, что прогноз выходных параметров, в частности уровня вибраций и качества получаемой поверхности, с помощью ИНС обладает более высокой точностью, чем оценка, которую дают феноменологические модели. Использование метода на основе ИНС позволяет подобрать режимы резания при заданной комбинации «обрабатываемый материал – направление подачи» для обеспечения требуемых параметров технологической операции. Показано, что ИНС практически не имеет ограничений по количеству анализируемых факторов, может обрабатывать числовой, текстовый или логический тип данных и отражать субъективные оценки объекта исследования проектировщиком, что невозможно при классическом экспериментальном подходе с применением регрессионных моделей. Поэтому ИНС с накопленными и проанализированными знаниями способна генерировать значения количественных характеристик проектируемых технологических операций с учетом особенностей конкретного производства, что позволило сделать вывод о перспективности дальнейших исследований в области использования ИНС при анализе и хранении производственных данных, а также для получения новых знаний.

691

Деревянчук, Е.Д. Решение обратной задачи определения диэлектрической проницаемости диафрагмы в волноводе / Е.Д. Деревянчук // Известия высших учебных заведений. Поволжский регион. Физико-математические науки .— 2011 .— №4 .— С. 36-43 .— URL: https://rucont.ru/efd/269960 (дата обращения: 05.09.2025)

Автор: Деревянчук
М.: ПРОМЕДИА

Рассматривается обратная задача электродинамики - задача определения эффективной диэлектрической проницаемости многосекционной диафрагмы, помещенной в прямоугольный волновод с идеально проводящими стенками. Разработаны рекуррентные методы решения прямой и обратной задач. На основе разработанных методов построены математические модели для двух- или трехсекционной диафрагм.

692

Медведик, М.Ю. Субиерархический метод решения интегрального уравнения на плоских экранах произвольной формы / М.Ю. Медведик // Известия высших учебных заведений. Поволжский регион. Физико-математические науки .— 2009 .— №4 .— С. 48-53 .— URL: https://rucont.ru/efd/269848 (дата обращения: 05.09.2025)

Автор: Медведик
М.: ПРОМЕДИА

Рассмотрено решение интегрального уравнения, полученного из краевой задачи Коши для уравнения Гельмгольца. Представлен численный метод Галеркина. Получены численные результаты решения задачи в двух случаях при k? 0 и k=0 с использованием субиерархического алгоритма на плоских экранах произвольной формы.

693

Рябов, И.В. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОМЫШЛЕННОЙ ОТРАСЛИ В УСЛОВИЯХ ГОМОГЕННОЙ ИНСТИТУЦИОНАЛЬНОЙ СРЕДЫ / И.В. Рябов // Экономические и гуманитарные науки .— 2013 .— №11 .— С. 87-89 .— URL: https://rucont.ru/efd/482488 (дата обращения: 05.09.2025)

Автор: Рябов

В статье рассмотрена математическая модель промышленной отрасли в условиях гомогенной институциональной среды. Результатом применения данной модели является возможность определения приоритетных промышленных отраслей

694

Баханович, С.В. Улучшение локальности параллельных алгоритмов численного решения двумерных квазилинейных параболических уравнений / С.В. Баханович, Н.А. Лиходед, П.А. Мандрик // Вестник Российского университета дружбы народов. Серия: Математика, информатика, физика .— 2014 .— №2 .— С. 213-217 .— URL: https://rucont.ru/efd/404420 (дата обращения: 05.09.2025)

Автор: Баханович

Уравнения параболического типа описывают процессы нелинейной теплопроводности, диффузии заряженных частиц в плазме, диффузии и дрейфа примесных атомов в полупроводниковых структурах, в химической кинетике. При численном решении практических задач такого рода появляются трудности, обусловленные недостаточными мощностью и объёмом оперативной памяти персонального компьютера. Возникает задача построения параллельных методов и алгоритмов для численного решения параболических уравнений на суперкомпьютерах. Одним из методов численного решения многомерных параболических уравнений является локально-одномерный метод. В работе предлагается параллельная реализация локально-одномерного метода численного решения линейных и квазилинейных двумерных параболических уравнений с краевыми условиями первого рода на суперкомпьютерах с распределённой памятью. Параллельный алгоритм построен с учётом локализации данных — операции и данные перераспределены между процессами таким образом, что значительная часть данных приватизирована процессами и не требует коммуникационных операций. Приведены результаты численных экспериментов.

695

№1 [Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика, 2016]

Журнал является периодическим научным изданием, которое содержит публикации в форме статей и кратких сообщений по основным направлениям научно- исследовательской работы факульета ВМиК МГУ: вычислительным методам прикладной математики и математическому моделированию, исследованию операций и математическим методам прогнозирования, приложениям теории вероятностей и математической статистики, математическим методам исследования нелинейных управляющих систем и процессов, теории и методам системного программирования, программному и математическому обеспечению вычислительных машин и сетей

Предпросмотр: Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика №1 2016.pdf (0,1 Мб)
696

№3 [Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика, 2017]

Журнал является периодическим научным изданием, которое содержит публикации в форме статей и кратких сообщений по основным направлениям научно- исследовательской работы факульета ВМиК МГУ: вычислительным методам прикладной математики и математическому моделированию, исследованию операций и математическим методам прогнозирования, приложениям теории вероятностей и математической статистики, математическим методам исследования нелинейных управляющих систем и процессов, теории и методам системного программирования, программному и математическому обеспечению вычислительных машин и сетей

Предпросмотр: Вестник Московского университета. Серия 15. Вычислительная математика и кибернетика №3 2017.pdf (0,2 Мб)
697

№2 [Вестник Московского университета. Серия 1. Математика. Механика, 2017]

Является периодическим научным изданием, отражающим тематику важнейших направлений теоретических исследований по математике и механике в МГУ имени М.В.Ломоносова. На его страницах печатаются оригинальные статьи, посвященные конкретным научным вопросам по всем основным направлениям теоретических и прикладных исследований.

Предпросмотр: Вестник Московского университета. Серия 1. Математика. Механика №2 2017.pdf (0,2 Мб)
698

№1 [Вестник Московского университета. Серия 1. Математика. Механика, 2024]

Является периодическим научным изданием, отражающим тематику важнейших направлений теоретических исследований по математике и механике в МГУ имени М.В.Ломоносова. На его страницах печатаются оригинальные статьи, посвященные конкретным научным вопросам по всем основным направлениям теоретических и прикладных исследований.

Предпросмотр: Вестник Московского университета. Серия 1. Математика. Механика №1 (0) 2024.pdf (0,1 Мб)
699

Численные методы. Ч. 1 метод. указания к проведению лаб. работ

Автор: Седых Ирина Александровна
Изд-во Липецкого государственного технического университета

Приведены задания для выполнения на лабораторных занятиях по дисциплинам «Спецглавы вычислительной математики», «Численные методы».

Предпросмотр: Численные методы.pdf (1,0 Мб)
700

№3 [Вестник Московского университета. Серия 1. Математика. Механика, 2014]

Является периодическим научным изданием, отражающим тематику важнейших направлений теоретических исследований по математике и механике в МГУ имени М.В.Ломоносова. На его страницах печатаются оригинальные статьи, посвященные конкретным научным вопросам по всем основным направлениям теоретических и прикладных исследований.

Предпросмотр: Вестник Московского университета. Серия 1. Математика. Механика №3 2014.pdf (0,8 Мб)
Страницы: 1 ... 12 13 14 15 16 ... 18