Ä

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ИНТЕРПОЛЯЦИЯ АЛГЕБРАИЧЕСКИМИ МНОГОЧЛЕНАМИ. СПЛАЙН-ИНТЕРПОЛЯЦИЯ

Учебно-методическое пособие для лекционных занятий в вузах

Составители: В.П. Трофимов, А.П. Карпова, М.Н. Небольсина

Издательско-полиграфический центр Воронежского государственного университета 2012

ТЕОРИЯ ПРИБЛИЖЕНИЯ ФУНКЦИЙ ОДНОЙ ВЕЩЕСТВЕННОЙ ПЕРЕМЕННОЙ

1. Интерполяция алгебраическими многочленами

1. 1. Постановка задачи интерполяции

Пусть для функции $f: X \to R, X \subset R$ известны ее значения в (n+1)-й точках $x_i \in X, i=0,...,n$. Запишем эти значения функции f в табл. 1.1

Таблица 1.1

X	x_0	\boldsymbol{x}_{1}	•••	X_n
f(x)	$f(x_0)$	$f(x_1)$	•••	$f(x_n)$

Далее будем считать, что выполнено условие

$$a \le x_0 < x_1 < \cdots < x_n \le b$$
.

Задача приближенного вычисления для заданной табл. 1.1 значения функции f(x) при $x \neq x_i$, i = 0, ..., n называется задачей интерполяции (распространения внутрь).

Решение этой задачи можно найти следующим образом: строится алгебраический многочлен степени не выше n

$$P_n(x; x_0, x_1, ..., x_n; f) = P_n(x; f),$$
 (1.1)

принимающий в точках x_0 , x_1 , \cdots , x_n те же значения, что и функция f :

$$f(x_i) = P_n(x_i; f), \quad i = 0, 1, ..., n.$$
 (1.2)

Интерполяционным многочленом (интерполянтой) для табл. 1.1 называется многочлен (1.1) степени не выше n, удовлетворяющий условию (1.2). Точки x_0 , x_1 , \cdots , x_n называются узлами интерполяции.

Вычисление значения f(x) при $x \neq x_i$, $i = 0, \dots, n$ по формуле

$$f(x) \approx P_n(x; f) \tag{1.3}$$

называется интерполяцией функции f с помощью алгебраического многочлена.

Замечание 1.1. Если $x \notin [a;b]$, то вычисление f(x) с помощью (1.3) называют **экстраполяцией**.

Замечание 1.2. Существуют различные формы записи интерполяционного многочлена.

Теорема 1.1. Для табл. 1.1 интерполяционный многочлен существует и единственен.

Доказательство. Запишем интерполяционный многочлен в виде

$$P_n(x; x_0, x_1, \dots, x_n; f) = a_0 + a_1 x + \dots + a_n x^n.$$

2) многочлен

$$\frac{(x-x_0)(x-x_1)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)(x_k-x_1)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)}$$

равен 1 при $x = x_k$ и равен нулю во всех остальных узлах.

Итак, для любого $k=0,\ldots,n$

$$l_k^{(n)}(x) = \frac{(x-x_0)(x-x_1)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)(x_k-x_1)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)}.$$

Введем многочлен $\omega(x)$ (n+1)-й степени, построенный по узлам интерполяции:

$$\omega(x) = (x - x_0)(x - x_1) \dots (x - x_{n-1})(x - x_n)$$

Заметим, что производная многочлена $\omega(x)$ в точке x_k

$$\omega'(x_k) = (x_k - x_0)(x_k - x_1) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n).$$

Теперь многочлен $l_{k}^{(n)}(x)$ можно записать в виде

$$l_k^{(n)}(x) = \frac{\omega(x)}{(x - x_k) \, \omega'(x_k)}. \tag{1.5}$$

По построению многочлен $f(x_k) l_k^{(n)}(x)$ имеет степень n, принимает в узле x_k значение $f(x_k)$ и равен нулю во всех остальных узлах интерполяции.

Следовательно, многочлен

$$L_n(x;f) = \sum_{k=0}^n f(x_k) \cdot l_k^{(n)}(x) = \sum_{k=0}^n f(x_k) \frac{\omega(x)}{(x - x_k) \omega'(x_k)}$$
(1.6)

является интерполяционным многочленом для табл. 1.1 (имеет степень не выше n и $L_n(x_i; f) = f(x_i)$, i = 0, ..., n).

Формулу (1.6) называют **интерполяционной формулой Лагранжа**, а полином $L_n(x;f)$ – **интерполяционным многочленом Лагранжа**.

Замечание 1.4. Число арифметических операций, необходимых для вычисления по формуле (1.6), имеет порядок $O(n^2)$.

Пример. Найдем интерполяционный многочлен Лагранжа для n=1. В этом случае формула (1.6) примет вид

$$L_{1}(x;f) = f(x_{0}) \frac{x - x_{1}}{x_{0} - x_{1}} + f(x_{1}) \frac{x - x_{0}}{x_{1} - x_{0}} = \frac{f(x_{0})(x - x_{1}) - f(x_{1})(x - x_{0})}{x_{0} - x_{1}}.$$

Графиком функции $L_1(x;f)$ является прямая, проходящая через точки $(x_0;f(x_0))$ и $(x_1;f(x_1))$. Такая полиномиальная интерполяция называется **линейной полиномиальной** (не путать с линейным интерполированием (см. важное замечание 1.1)).

Задание. Найдите интерполяционные многочлены Лагранжа для n = 2, 3.

Замечание 1.5. Поскольку интерполяционный многочлен (1.6) линейно зависит от значений функции $f(x_i)$, то интерполяционный многочлен для суммы функций равен сумме интерполяционных многочленов слагаемых.

1.3. Погрешность интерполяции

Погрешностью интерполяции называется разность

$$r_n(x; f) = f(x) - P_n(x; f).$$
 (1.7)

Очевидно, что в узлах интерполяции x_0 , x_1 , \cdots , x_n

$$r_n(x_i; f) = f(x_i) - P_n(x_i; f) = 0.$$

В остальных точках погрешность интерполяции, вообще говоря, отлична от нуля.

Замечание 1.6. Из предложения 1.1 следует, что погрешность интерполяции $r(x_i;f)\equiv 0$ для любой функции $f\in P^{(n)}$, где $P^{(n)}$ – пространство многочленов степени не выше n .

Найдем погрешность интерполяции для многочлена степени n+1 ($f \in P^{(n+1)}$, $\deg f = n+1$).

В этом случае $r_n(x;f)=f(x)-P_n(x;f)$ есть многочлен степени n+1 и узлы интерполяции x_k , $k=0,\ldots$, n являются его корнями.

Следовательно,

$$r_n(x;f) = c \cdot \omega(x) = c \cdot (x-x_0)(x-x_1)...(x-x_{n-1})(x-x_n),$$
 (1.8) где $c = \text{const}$.

Продифференцировав по x это равенство n+1 раз, получим

$$r_n^{(n+1)}(x;f) = f^{(n+1)}(x) - P_n^{(n+1)}(x;f) = f^{(n+1)}(x) = c \cdot (n+1)!,$$

так как $P_n(x;f)$ – многочлен степени n, то $P_n^{(n+1)}(x;f) \equiv 0$.

Отсюда найдем $c = \frac{f^{(n+1)}(x)}{(n+1)!}$. Таким образом, для $f \in \mathbf{P}^{(n+1)}$ погрешность интерполяции имеет вид

$$r_n(x; f) = c \cdot \omega(x) = \frac{f^{(n+1)}(x)}{(n+1)!} \omega(x).$$
 (1.9)

Однако для произвольной функции, заданной только табл. 1.1, ничего конкретного сказать о погрешности интерполяции нельзя.

Если функция $f \in C^{(n+1)}[a;b]$ ($C^{(n+1)}[a;b]$ — пространство функций, n+1 раз непрерывно дифференцируемых на отрезке [a;b]), то для погрешности интерполяции можно получить формулу, аналогичную (1.8).

Теорема 1.2. Если $f \in C^{(n+1)}[a;b]$, то для любого $x \in [a;b]$ погрешность интерполяции определяется формулой

 $r_n(x; f) = \frac{f^{(n+1)}(\xi)}{(n+1)!} \omega(x),$ (1.10)

где ξ – некоторая точка отрезка [a;b] ($\xi=\xi(x)\in[a;b]$).

Доказательство. Будем разыскивать погрешность интерполяции в виде (1.8), положив c=c(x),

$$r_n(x; f) = c(x) \cdot \omega(x).$$

Зафиксируем произвольное $x \in [a;b], x \neq x_i, i = 0, ..., n$ и рассмотрим вспомогательную функцию φ от переменной Z:

$$\varphi(z) = r_n(z; f) - c(x)\omega(z) =$$

$$= f(z) - P_n(z; f) - c(x)\omega(z).$$

Очевидно, что $\varphi \in C^{(n+1)}[a;b]$ и обращается в нуль в n+2 точках отрезка [a;b]: $z=x,x_0,x_1,\cdots,x_n$. По теореме Ролля функция φ' (производная от функции φ по z) обращается в нуль по крайней мере в n+1 точках отрезка [a;b], при этом $\varphi' \in C^{(n)}[a;b]$, функция φ'' равна нулю по крайней мере в n точках этого отрезка, $\varphi'' \in C^{(n-1)}[a;b]$ и так далее.

Таким образом, $\varphi^{(n+1)}(z)$ ($\varphi^{(n+1)} \in C[a;b]$) обращается в нуль по крайней мере в одной точке $\xi \in [a;b]$ и $\xi = \xi(x)$.

Учитывая, что для любого x

$$P_n^{(n+1)}(x; f) \equiv 0 \text{ M } \omega^{(n+1)}(x) \equiv (n+1)!,$$

получаем

$$\varphi^{(n+1)}(\xi) = f^{(n+1)}(\xi) - c(x) \cdot (n+1)! = 0.$$

Следовательно,

$$c(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}$$

И

$$r_n(x; f) = \frac{f^{(n+1)}(\xi)}{(n+1)!}\omega(x),$$

где $\xi = \xi(x) \in [a;b]$.

Теорема доказана.

Важное замечание 1.2. Из формулы (1.10) следует, что погрешность интерполяции зависит от выбора узлов интерполяции x_0, x_1, \cdots, x_n и гладкости функции f.