
Свободный доступ

Ограниченный доступ

Уточняется продление лицензии
Автор: Гаврилова Н. Ф.
М.: ВАКО
В данном пособии учитель найдет все, что необходимо для подготовки к урокам: подробные поурочные разработки, методические советы и рекомендации, тексты самостоятельных и контрольных работ, тестовые задания, дополнительные задачи по каждой теме, задачи повышенной сложности. Особенностью пособия является дифференцированный подход к планированию, позволяющий проводить уроки в классах разного профиля и уровня подготовки. Издание содержит справочные материалы, обобщающие таблицы и карточки для индивидуальной работы. Пособие адресовано прежде всего учителям, работающим с учебным комплектом Л.С. Атанасяна и др. (М.: Просвещение). Полноценно может использоваться практически со всеми учебниками для основной школы. Подходит к учебникам «Геометрия» в составе УМК Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева и др. 2014–2021 гг. выпуска.
Предпросмотр: Поурочные разработки по геометрии. 8 класс пособие для учителя (к УМК Л.С. Атанасяна и др. (М. Просвещение)).pdf (0,2 Мб)
Автор: Прояева Ирина Владимировна
Экспресс-печать
Пособие содержит темы, входящие в рабочую программу курса «Геометрия».
Книга предназначена для студентов очной и заочной форм обучения,
обучающихся по направлению подготовки 44.03.05 Педагогическое
образование (с двумя профилями подготовки), профили Математика и Физика,
Математика и Информатика, Математика и Экономика, учителей,
старшеклассников, абитуриентов. В пособии рассматриваются образцы
решений стереометрических задач, содержатся необходимые теоретические
сведения для решения задач по указанному разделу, предлагаются задачи для
самостоятельного решения.
Предпросмотр: Методические аспекты решения стереометрических задач.pdf (0,3 Мб)
Автор: Дергач В. В.
Сиб. федер. ун-т
В учебном пособии в соответствии с программой изложены основные методы проецирования, позволяющие строить изображения пространственных геометрических образов на плоскости, способы решения позиционных и метрических задач, имеющих практическое значение.
Предпросмотр: Начертательная геометрия.pdf (0,9 Мб)
Автор: Славянович Василий Яковлевич
[Б.и.]
Основой для изложения раздела «Кинематика» курса теоретической
механики послужил курс лекций, читавшихся автором в Оренбургском
политехническом институте (ныне – Оренбургский государственный
университет). Побудительной причиной написания учебника явилось
стремление сделать изложение учебного материала более последовательным
и строгим, чем в большинстве существующих учебников по теоретической
механике для технических специальностей. Электронный вариант учебника
подготовлен кафедрой математического анализа и МПМ Оренбургского
государственного педагогического университета.
Предпросмотр: Теоретическая механика Кинематика. Ч. 3.pdf (0,9 Мб)
Автор: Шарикян Ю. Э.
М.: Изд-во МГТУ им. Н.Э. Баумана
Методические указания написаны в помощь студентам, выполняющим домашнее задание по начертательной геометрии. Рассмотрены общие схемы и принципы решения задач, требования к оформлению домашнего задания. Приведены вопросы для проработки учебного материала перед защитой домашнего задания.
Предпросмотр: Выполнение домашнего задания по начертательной геометрии.pdf (0,4 Мб)
М.: ВАКО
В пособии представлены контрольно-измерительные материалы (КИМы) по геометрии для 11 класса – тесты в формате заданий ЕГЭ, а также самостоятельные и контрольные работы по всем изучаемым темам. Ко всем заданиям приведены ответы. Предлагаемый материал позволяет проводить проверку знаний, используя различные формы контроля.
Предпросмотр: Контрольно-измерительные материалы. Геометрия. 11 класс.pdf (0,1 Мб)
ЯрГУ
The International Delaunay Laboratory of Discrete and Computational Geometry introduces a new books series: the Delaunay Library. We open the series with the First Yaroslavl Summer School on Discrete and Computational Geometry, which contains lecture notes accompanying the short courses delivered in July and August of 2012. We hope this volume will be useful to all students and post graduates interested in the current state-of-the-art in this field. Funded by Russian Government Grant 220 / Contract 11.G34.31.0053/
Предпросмотр: First Yaroslavl Summer School on Discrete and Computational Geometry. July August, 2012. Lecture Notes.pdf (0,3 Мб)
Автор: Щетинин А. Н.
М.: Изд-во МГТУ им. Н.Э. Баумана
Рассмотрены векторные и конвекторные поля, тензорные поля, производная Ли, ковариантное дифференцирование, связность Леви-Чивита, тензоры кручения и кривизны. Дано строгое изложение аппарата римановой геометрии. Приведено домашнее задание, включающее 24 варианта типовых расчетных заданий.
Предпросмотр: Введение в тензорный анализ.pdf (0,1 Мб)
Бурятский государственный университет
В пособии освещаются основные вопросы курса начертательной геометрии соответственно модульной программе дисциплины. Задания, контрольные вопросы и тестовые задания позволяют студентам усовершенствовать свои знания в теории построения чертежа и показать уровень усвоения учебного материала.
Предпросмотр: Самостоятельная работа по начертательной геометрии .pdf (0,7 Мб)
Журнал "Тонкие химические технологии" (прежнее название [2006-2014] "Вестник МИТХТ") выходит один раз в два месяца и публикует обзоры и статьи по актуальным проблемам химической технологии и смежных наук. Журнал основан в 2006 году. Учредителем журнала является Московская государственная академия тонкой химической технологии им. М.В. Ломоносова (МИТХТ), ныне Московский государственный университет тонких химических технологий имени М.В. Ломоносова. Журнал входит в Перечень ведущих рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертации на соискание ученой степени доктора (кандидата) наук. Журнал реферируется в международной базе данных Chemical Abstracts, входит в международный каталог периодических изданий Ulrich.
Под новым названием "Тонкие химические технологии" журнал "Вестник МИТХТ" выходит, начиная с 1-го выпуска 10-го тома за 2015 год.
Предпросмотр: Тонкие химические технологии №3 2020.pdf (1,4 Мб)
Автор: Долгарев
М.: ПРОМЕДИА
На основе коэффициентов квадратичных форм поверхности одулярного галилеева пространства с сибсоном (единственным 3-мерным нильпотентным одулем Ли) составлена система дифференциальных уравнений с частными производными, решение которой приводит к определению поверхности.
Автор: Долгарев
М.: ПРОМЕДИА
Методами галилеевой геометрии решены некоторые системы второго порядка обыкновенных дифференциальных уравнений. Определены галилеевы кривизны евклидовых кривых и галилеевы квадратичные формы евклидовых поверхностей. Приведены примеры отыскания кривых и поверхностей по галилеевым кривизнам и коэффициентам галилеевых квадратичных форм соответственно. Указана галилеева связность для евклидовых поверхностей, позволяющая находить галилееву метрическую функцию евклидовой поверхности. Галилеевыми методами решена задача И. Ньютона - найдены траектории движения материальной точки двух и трех степеней свободы по заданному 2-мерному полю ускорений движения.
Автор: Коломыцева
М.: ПРОМЕДИА
Даются достаточные условия существования счетного множества обобщенных втулочных связей, совместимых с нетривиальными ARG-деформациями поверхностей положительной внешней кривизны с краем в римановом пространстве при заданном коэффициенте рекуррентности.
изд-во СКФУ
Пособие (практикум) подготовлено в соответствии с Федеральным государственным образовательным стандартом высшего образования, представляет собой учебно-методические материалы по организации практических занятий, может служить также основой для организации самостоятельной работы студентов. В нем содержатся индивидуальные задания в тридцати вариантах, теоретические вопросы для развития и контроля владения компетенциями.
Предпросмотр: Математика. Часть 1.pdf (0,5 Мб)
Автор: Корниенко Владимир Владимирович
КрасГАУ
Применение сборника заданий в учебном процессе позволяет сократить
время учебного процесса, повысить эффективность обучения и успеваемость по
графическим дисциплинам, активизировать познавательную деятельность
студентов.
Предпросмотр: Начертательная геометрия.pdf (0,3 Мб)
Автор: Астахов
основное содержание статьи составляет рассмотрение геометрических свойств симплексов, а также с помощью привлечения теоремы Гаусса–Остроградского устанавливается, что для любого симплекса найдутся две нормали, такие, что (⃗n ,⃗n) ⩽ − 1/n. Исследование дополняется также рассмотрением частного случая когда неравенство переходит в равенство. Данное направление дополняется также рассмотрением того, что любой развёрнутый набор единичных векторов служит внешними нормалями к некоторому симплексу T с непустой внутренностью. С помощью неравенства (⃗n ,⃗n) ⩽ − 1/n установлено, что в любом наборе развернутых единичных векторов найдутся два таких, для которых оно выполняется. Данная проблема и метод доказательства теоремы мало изучены и требуют дальнейших исследований.
Автор: Калинкин В. Н.
М.: Изд-во МГТУ им. Н.Э. Баумана
Методические указания написаны в помощь студентам, изучающим основы проективной геометрии, являющейся фундаментальной теоретической базой геометрии начертательной. Рассматриваются синтетический подход к построению проективного пространства, соответствие форм первой и второй ступеней, центральная коллинеация, а также гомология и ее частные случаи. В целях закрепления полученных знаний в пособии помимо теоретических положений представлены и
задачи. Избранная форма пособия удобна как для изучения курса,
так и для проверки полученных знаний.
Предпросмотр: Основания начертательной геометрии. Сборник вопросов и задач.pdf (0,1 Мб)
Журнал "Тонкие химические технологии" (прежнее название [2006-2014] "Вестник МИТХТ") выходит один раз в два месяца и публикует обзоры и статьи по актуальным проблемам химической технологии и смежных наук. Журнал основан в 2006 году. Учредителем журнала является Московская государственная академия тонкой химической технологии им. М.В. Ломоносова (МИТХТ), ныне Московский государственный университет тонких химических технологий имени М.В. Ломоносова. Журнал входит в Перечень ведущих рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертации на соискание ученой степени доктора (кандидата) наук. Журнал реферируется в международной базе данных Chemical Abstracts, входит в международный каталог периодических изданий Ulrich.
Под новым названием "Тонкие химические технологии" журнал "Вестник МИТХТ" выходит, начиная с 1-го выпуска 10-го тома за 2015 год.
Предпросмотр: Тонкие химические технологии №2 (0) 2024.pdf (0,3 Мб)
Автор: Нетесин
М.: ПРОМЕДИА
Пример решения одной из классических задач математики.
Автор: Долгарев
М.: ПРОМЕДИА
Операциями над тройками действительных чисел с двумя ведущими компонентами вводится 3-мерный растран, называемый W-растраном. Получено представление W-растрана матрицами и аффинными преобразованиями. Найден генетический код W-растрана. Определена галилеева норма на W-растране с 2-мерным временем. Найдена формула дифференцирования растранных функций. В пространстве с W-растраном получены уравнения прямых и двух видов параллельных прямых.
Автор: Петлина Таисия Петровна
РИЦ СГСХА
Методические указания содержат задания и рекомендации для выполнения контрольных работ по разделу начертательной геометрии с примерами их выполнения, составленными в соответствии с рабочей программой дисциплины «Начертательная геометрия и инженерная графика».
Предпросмотр: Начертательная геометрия.pdf (0,9 Мб)
Автор: Долгарев
М.: ПРОМЕДИА
Рассматриваются абелевы подгруппы действительных унитреугольных групп третьего, четвертого и пятого порядков и изоморфные им группы кортежей длины 2, 3, 4 действительных чисел. На последних получены линейные пространства, альтернативные арифметическому пространству. Операции над векторами альтернативных пространств задаются нелинейными формулами. Группы автоморфизмов пространств одной размерности задаются нелинейными формулами различного вида. Все рассматриваемые линейные пространства являются подсибсонами. Определены сибсоны размерностей 3, 6, 10.
Автор: Романова Г. Н.
КНИТУ
Содержит краткие теоретические сведения, сопровождаемые примерами и заданиями для самостоятельной работы по основным разделам высшей математики. Адресовано студентам бакалаврской подготовки и специалистам, обучающимся по направлениям: 08.03.01 «Строительство», 14.03.01 «Ядерная энергетика и теплофизика», 15.03.02 «Технологические машины и оборудование», 16.03.03 «Холодильная, криогенная техника и системы», 18.03.01 «Химическая технология», 22.03.01 «Материаловедение и технологии материалов», 29.03.04 «Технология художественной обработки материалов», 35.03.02 «Технология лесозаготовительных и деревоперерабатывающих производств».
Предпросмотр: Математика в таблицах учебное пособие в 3 ч. Ч.1.pdf (0,6 Мб)
Журнал "Тонкие химические технологии" (прежнее название [2006-2014] "Вестник МИТХТ") выходит один раз в два месяца и публикует обзоры и статьи по актуальным проблемам химической технологии и смежных наук. Журнал основан в 2006 году. Учредителем журнала является Московская государственная академия тонкой химической технологии им. М.В. Ломоносова (МИТХТ), ныне Московский государственный университет тонких химических технологий имени М.В. Ломоносова. Журнал входит в Перечень ведущих рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертации на соискание ученой степени доктора (кандидата) наук. Журнал реферируется в международной базе данных Chemical Abstracts, входит в международный каталог периодических изданий Ulrich.
Под новым названием "Тонкие химические технологии" журнал "Вестник МИТХТ" выходит, начиная с 1-го выпуска 10-го тома за 2015 год.
Предпросмотр: Тонкие химические технологии №2 (0) 2025.pdf (0,3 Мб)
Автор: Блискавка
М.: ПРОМЕДИА
Приближенные варианты решения классических задач.
Автор: Шелаев
М.: ПРОМЕДИА
Геометрическая модель обобщенного золотого сечения.
РИО СамГАУ
Методические рекомендации предназначены для самостоятельного выполнения расчетно-графической работы по дисциплине «Начертательная геометрия и инженерная графика». Для обучающихся по направлению под-готовки 35.03.06 Агроинженерия. Могут быть полезны студентам направ-лений обучения: 23.03.03 Эксплуатация транспортно-технологических ма-шин и комплексов, 44.03.04 Профессиональное обучение (по отраслям).
Предпросмотр: Начертательная геометрия и инженерная графика методические рекомендации .pdf (1,2 Мб)
Журнал "Тонкие химические технологии" (прежнее название [2006-2014] "Вестник МИТХТ") выходит один раз в два месяца и публикует обзоры и статьи по актуальным проблемам химической технологии и смежных наук. Журнал основан в 2006 году. Учредителем журнала является Московская государственная академия тонкой химической технологии им. М.В. Ломоносова (МИТХТ), ныне Московский государственный университет тонких химических технологий имени М.В. Ломоносова. Журнал входит в Перечень ведущих рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертации на соискание ученой степени доктора (кандидата) наук. Журнал реферируется в международной базе данных Chemical Abstracts, входит в международный каталог периодических изданий Ulrich.
Под новым названием "Тонкие химические технологии" журнал "Вестник МИТХТ" выходит, начиная с 1-го выпуска 10-го тома за 2015 год.
Предпросмотр: Тонкие химические технологии №5 2015 (1).pdf (1,4 Мб)
Автор: Константинов А. В.
М.: ВЛАДОС
Курс лекций по техническому рисунку прочитан А.В. Константиновым в Московском педагогическом государственном университете в 2000—2015 гг.
Содержит краткое изложение теоретических основ, условностей, способов и этапов выполнения технических рисунков различных объектов.
Предпросмотр: Технический рисунок. Курс лекций. .pdf (0,1 Мб)
Автор: Атанасян Л. С.
М.: Лаборатория знаний
Эта книга выгодно отличается от других пособий по геометрии Лобачевского. Материал излагается на основе школьной аксиоматики абсолютной геометрии и аксиомы Лобачевского. Первая часть книги посвящена планиметрии
Лобачевского, а вторая — стереометрии. В конце каждой главы даются задачи, в конце книги — ответы и указания к ним.
Предпросмотр: Геометрия Лобачевского .pdf (0,3 Мб)
Автор: Деза Мишель Мари
М.: Институт компьютерных исследований
Полициклы и симметричные полиэдры возникают как обобщения графов при моделировании молекулярных структур, возникающих в химии и кристаллографии, таких как фуллерены, за открытие которых была присуждена Нобелевская премия. Химия породила много интересных вопросов в математике и компьютерном моделировании, которые, в свою очередь, предлагают новые направления при синтезе молекул. Данная монография содержит новые результаты теории полициклов и биполициклов вместе с необходимой вводной информацией, включающей в себя описание необходимых для изучения материала математических инструментов. Книга организована так, что после чтения вводной главы каждая последующая может быть прочитана независимо от предыдущих. Многие приводимые результаты потребовали использование компьютерного перебора. Соответствующие программы доступны на сайтах авторов.
Предпросмотр: Геометрия химических графов полициклы и биполициклы.pdf (0,3 Мб)