Национальный цифровой ресурс Руконт - межотраслевая электронная библиотека (ЭБС) на базе технологии Контекстум (всего произведений: 599089)
Консорциум Контекстум Информационная технология сбора цифрового контента
Уважаемые СТУДЕНТЫ и СОТРУДНИКИ ВУЗов, использующие нашу ЭБС. Рекомендуем использовать новую версию сайта.

Геометрия. Основной курс с решениями и указаниями (460,00 руб.)

0   0
Первый авторЗолотарёва Н. Д.
АвторыСемендяева Н. Л., Федотов М. В.
ИздательствоМ.: Лаборатория знаний
Страниц307
ID443629
АннотацияНастоящее пособие составлено на основе задач вступительных экзаменов по математике в МГУ имени М. В. Ломоносова и задач единого государственного экзамена преподавателями факультета ВМК МГУ имени М.В. Ломоносова. Пособие содержит теоретический материал, подборку задач, а также идеи, указания (подсказки) и решения задач.
Кому рекомендованоРекомендуется школьникам при подготовке к сдаче единого государственного экзамена, абитуриентам при подготовке к поступлению как в МГУ, так и другие вузы, учителям математики, репетиторам, руководителям кружков и факультативов, преподавателям подготовительных курсов.
ISBN978-5-00101-593-2
УДК373.5:51
ББК22.1я729
Золотарёва, Н.Д. Геометрия. Основной курс с решениями и указаниями : учеб.-метод. пособие / Н.Л. Семендяева, М.В. Федотов; Н.Д. Золотарёва .— Эл. изд. — Москва : Лаборатория знаний, 2018 .— 307 с. — (ВМК МГУ — школе) .— Деривативное эл. изд. на основе печ. аналога (М.: Лаборатория знаний, 2018); Электрон. текстовые дан. (1 файл pdf : 307 с.); Систем. требования: Adobe Reader XI ; экран 10" .— ISBN 978-5-00101-593-2 .— URL: https://rucont.ru/efd/443629 (дата обращения: 06.12.2022)

Предпросмотр (выдержки из произведения)

Теорема Пифагора: a2 +b2 = c2, здесь a, b – катеты прямоугольного треугольника, c – гипотенуза. <...> Теория и задачи Для доказательства первого равенства достаточно записать площадь треугольника ABC двумя способами: S∆ABC = 1 2hcc = 1 2ab =⇒ hc = ab c . <...> • Медианы треугольника пересекаются в однойточке и делятся ею в отношении 2: 1, считая от вершины. <...> • Биссектрисы треугольника пересекаются в однойточке, и эта точка есть центр вписаннойокружности. <...> В этом случае радиус описаннойокружности равен медиане, проведённойк гипотенузе, и половине гипотенузы. <...> Пусть катет BC =15, а проекция катета AC на гипотенузу AB равна 16. <...> Поскольку диаметр окружности, описаннойоколо прямоугольного треугольника, равен гипотенузе, нам надо найти проекцию катета BC на гипотенузу. <...> Она касается гипотенузы AB в точке M, причём AM =12 и BM =8. <...> Для того, чтобы найти площадь треугольника AOB, нам надо найти его высоту OM, которая равна радиусу вписаннойокружности. <...> Теория и задачи По свойству касательных, проведённых из одной точки, AP = AM =12 и Так как в прямоугольном треугольнике медиана равна половине гипотенузы, то PO = 1 2QR = QO =5x. <...> Найдите площадь прямоугольного треугольника, если длина гипотенузы равна 2√13 см, а длина медианы большего острого угла равна 5 см. <...> Средние линии прямоугольного треугольника, параллельные катетам, равны 5 см и 12 см. Найдите высоту треугольника h, опущенную из вершины прямого угла. <...> В прямоугольном треугольнике ABC угол C прямой, CM – медиана треугольника. <...> Медиана AM треугольника ABC равна половине стороны BC. <...> В прямоугольном треугольнике ABC AC =3,BC =4. <...> В треугольнике ABC известны стороны AC =2, AB =3, BC =4. <...> Чему равно расстояние от вершины прямого угла до центра вписаннойв этот треугольник окружности? <...> Пусть r – радиус окружности, вписаннойв прямоугольный треугольник с ка. тетами a, b и гипотенузой c. <...> 12 Теорема синусов: Теорема косинусов: sinα = b a sinβ = c sin γ =2R. <...> Здесь и далее a <...>
Геометрия._Базовый_курс_с_решениями_и_указаниями.pdf
Н. Д. Золотарёва, Н. Л. Семендяева, М. В. Федотов ГЕОМЕТРИЯ ОСНОВНОЙ КУРС с решениями и указаниями Учебно-методическое пособие Под редакцией М. В. Федотова Электронное издание Москва Лаборатория знаний 2018
Стр.2
ББКУДК 373.3:51 22.1я729 З-80 Золотарёва Н. Д. З-80 Геометрия. Основной курс с решениями и указаниями [Электронный ресурс] : учебно-методическое пособие / Н. Д. Золотарёва, Н. Л. Семендяева, М. В. Федотов ; под редакцией М. В. Федотова. — Эл. изд. — Электрон. текстовые дан. (1 файл pdf : 307 с.). —М. : Лаборатория знаний, 2018. —(ВМК МГУ—школе). — Систем. требования: Adobe Reader XI ; экран 10". ISBN 978-5-00101-593-2 Настоящее пособие составлено на основе задач вступительных экзаменов по математике в МГУ имени М. В. Ломоносова и задач Единого государственного экзамена преподавателями факультета ВМК МГУ имени М. В. Ломоносова. Пособие содержит теоретический материал, подборку задач, а также идеи, указания (подсказки) и решения задач. Рекомендуется школьникам при подготовке к сдаче Единого государственного экзамена, абитуриентам при подготовке к поступлению как в МГУ, так и в другие вузы, учителям математики, репетиторам, руководителям кружков и факультативов, преподавателям подготовительных курсов. ББКУДК 373.3:51 22.1я729 Деривативное электронное издание на основе печатного аналога: Геометрия. Основной курс с решениями и указаниями : учебно-методическое пособие / Н. Д. Золотарёва, Н. Л. Семендяева, М. В. Федотов ; под редакцией М. В. Федотова. —М. : Лаборатория знаний, 2018. — 302 с. : ил. —(ВМК МГУ—школе). — ISBN 978-5-00101-140-8. В соответствии со ст. 1299 и 1301 ГК РФ при устранении ограничений, установленных техническими средствами защиты авторских прав, правообладатель вправе требовать от нарушителя возмещения убытков или выплаты компенсации ISBN 978-5-00101-593-2 ○c Золотарёва Н. Д., Семендяева Н. Л., ○c Лаборатория знаний, 2018 Федотов М. В., 2018
Стр.3
Оглавление От редактора ... .. .. ... .. .. .. ... .. .. ... .. .. ... .. . Предисловие ... .. .. ... .. .. .. ... .. .. ... .. .. ... .. . Часть I. Теория и задачи Планиметрия . . . . . ... .. .. .. ... .. .. ... .. .. ... .. . 1. Треугольники . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1. Прямоугольные треугольники . . . . . . . . . . . . . . . . . . . 5 6 7 7 7 7 1.2. Общие треугольники. Теоремы синусов, косинусов . . . . . . . 11 1.3. Медиана, биссектриса, высота . . . . . . . . . . . . . . . . . . . 16 1.4. Подобие треугольников. Теорема Фалеса . . . . . . . . . . . . 19 1.5. Площади . . ... .. .. .. ... .. .. ... .. .. ... .. . 23 2. Окружности .. .. ... .. .. .. ... .. .. ... .. .. ... .. . 28 2.1. Углы в окружностях. Касание окружности и прямой. . . . . 28 2.2. Свойства касательных, хорд, секущих . . . . . . . . . . . . . . 32 2.3. Смешанные задачи . .. .. ... .. .. ... .. .. ... .. . 36 3. Многоугольники . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1. Параллелограммы .. .. .. ... .. .. ... .. .. ... .. . 40 3.2. Трапеции .. ... .. .. .. ... .. .. ... .. .. ... .. . 43 3.3. Общие четырехугольники. Правильные многоугольники . . . 47 4. Координаты и векторы . .. .. .. ... .. .. ... .. .. ... .. . 51 4.1. Декартовы координаты и векторы на плоскости . . . . . . . . 51 . . ... .. .. .. ... .. .. ... .. .. ... .. . 58 . . Стереометрия . Введение в стереометрию .. .. .. .. ... .. .. ... .. .. ... .. . 58 5. Призма ... .. .. ... .. .. .. ... .. .. ... .. .. ... .. . 62 5.1. Прямая призма . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2. Наклонная призма . . . . . . . . . . . . . . . . . . . . . . . . . 66 6. Пирамида .. .. .. ... .. .. .. ... .. .. ... .. .. ... .. . 68 6.1. Правильная пирамида . . . . . . . . . . . . . . . . . . . . . . . 68 6.2. Тетраэдр .. ... .. .. .. ... .. .. ... .. .. ... .. . 70 6.3. Произвольные пирамиды . . . . . . . . . . . . . . . . . . . . . . 72 . . ... .. .. .. ... .. .. ... .. .. ... .. . 74 7. Тела вращения . 7.1. Цилиндр . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.2. Конус . . . . ... .. .. .. ... .. .. ... .. .. ... .. . 76 7.3. Шар . .. .. ... .. .. .. ... .. .. ... .. .. ... .. . 79 8. Координаты и векторы . .. .. .. ... .. .. ... .. .. ... .. . 83 8.1. Декартовы координаты и векторы в пространстве . . . . . . . 83 Часть II. Указания и решения Планиметрия . . . 87 . . ... .. .. .. ... .. .. ... .. .. ... .. . 87 1. Треугольники . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 1.1. Прямоугольные треугольники . . . . . . . . . . . . . . . . . . . 87 1.2. Общие треугольники. Теоремы синусов, косинусов . . . . . . . 99 1.3. Медиана, биссектриса, высота . . . . . . . . . . . . . . . . . . . 110 1.4. Подобие треугольников. Теорема Фалеса . . . . . . . . . . . . 122 1.5. Площади . . ... .. .. .. ... .. .. ... .. .. ... .. . 135
Стр.4
4 2. Окружности . ... .. .. ... .. .. ... .. .. .. ... .. .. .. 150 2.1. Углы в окружностях. Касание окружности и прямой. . . . . 150 2.2. Свойства касательных, хорд, секущих . . . . . . . . . . . . . . 161 2.3. Смешанные задачи ... .. .. ... .. .. .. ... .. .. .. 171 3. Многоугольники . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 3.1. Параллелограммы . ... .. .. ... .. .. .. ... .. .. .. 185 3.2. Трапеции .. .. .. ... .. .. ... .. .. .. ... .. .. .. 194 3.3. Общие четырёхугольники. Правильные многоугольники . . . 206 4. Координаты и векторы . . ... .. .. ... .. .. .. ... .. .. .. 217 4.1. Декартовы координаты и векторы на плоскости . . . . . . . . 217 Стереометрия .. ... .. .. ... .. .. ... .. .. .. ... .. .. .. 224 5. Призма .. .. ... .. .. ... .. .. ... .. .. .. ... .. .. .. 224 5.1. Прямая призма . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 5.2. Наклонная призма . . . . . . . . . . . . . . . . . . . . . . . . . 233 . . ... .. .. ... .. .. ... .. .. .. ... .. .. .. 241 6. Пирамида . 6.1. Правильная пирамида . . . . . . . . . . . . . . . . . . . . . . . 241 6.2. Тетраэдр .. .. .. ... .. .. ... .. .. .. ... .. .. .. 247 6.3. Произвольные пирамиды . . . . . . . . . . . . . . . . . . . . . . 253 7. Тела вращения ... .. .. ... .. .. ... .. .. .. ... .. .. .. 261 7.1. Цилиндр . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 7.2. Конус . ... .. .. ... .. .. ... .. .. .. ... .. .. .. 267 7.3. Шар . . ... .. .. ... .. .. ... .. .. .. ... .. .. .. 272 8. Координаты и векторы . . ... .. .. ... .. .. .. ... .. .. .. 280 8.1. Декартовы координаты и векторы в пространстве . . . . . . . 280 Задачи ЕГЭ последних лет ... .. .. ... .. .. .. ... .. .. .. 287 Варианты ДВИ МГУ последних лет . ... .. .. .. ... .. .. .. 289 Ответы ... .. .. ... .. .. ... .. .. ... .. .. .. ... .. .. .. 296 Литература .. .. ... .. .. ... .. .. ... .. .. .. ... .. .. .. 302
Стр.5