Национальный цифровой ресурс Руконт - межотраслевая электронная библиотека (ЭБС) на базе технологии Контекстум (всего произведений: 634160)
Контекстум
.

Элементы алгебры в курсе математики для учащихся начальных классов

0   0
Первый авторКузьминова Валентина Ивановна
Издательство[Б.и.]
Страниц25
ID151838
АннотацияПособие нацелено на углубление и обобщение методических знаний студентов по одному из вопросов частной методики – изучения алгебраического материала в курсе математики, а также на систематизацию типов заданий, которые необходимо использовать в процессе усвоения детьми элементов алгебры.
Кому рекомендованоПособие предназначено для студентов-бакалавров, обучающихся по направлению 050700 – «Педагогика», профиль 050707 – «Начальное образование»
УДК372.8
ББК74.202.42
Кузьминова, В.И. Элементы алгебры в курсе математики для учащихся начальных классов / В.И. Кузьминова .— : [Б.и.], 2011 .— 25 с. — URL: https://rucont.ru/efd/151838 (дата обращения: 16.04.2024)

Предпросмотр (выдержки из произведения)

Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования «Соликамский государственный педагогический институт» Кафедра математики и физики <...> Пособие нацелено на углубление и обобщение методических знаний студентов по одному из вопросов частной методики – изучения алгебраического материала в курсе математики, а также на систематизацию типов заданий, которые необходимо использовать в процессе усвоения детьми элементов алгебры. <...> Протокол № 17 от 10.12.2010 г. © Кузьминова В. И., 2011 © ГОУ ВПО «Соликамский государственный педагогический институт, 2011 3 Введение Данное учебно-методическое пособие предназначено для студентов-бакалавров, обучающихся по направлению 050700 – «Педагогика», профиль 050707 – «Начальное образование». <...> Пособие посвящено изучению одного из вопросов дисциплины «Теоретические основы и технологии начального математического образования» – методике изучения элементов алгебры в начальном курсе математики. <...> В пособии даны краткие исторические сведения о зарождении алгебры как науки, раскрыты общие положения, связанные с изучением алгебраического материала в начальной школе. <...> В пособии описана методика обучения младших школьников отдельным вопросам (числовые выражения, числовые равенства и неравенства, буквенные выражения, уравнения и неравенства с одной переменной), выделены типы заданий, которые необходимо использовать при уточнении представлений об основных понятиях алгебры. <...> Восполняя недостаток в учебно-методической литературе по дисциплине «Теоретические основы и технологии начального математического образования», учебное пособие углубляет и обобщает знания студентов, позволяя сформировать правильный подход к изучению элементов алгебры и умение самостоятельно работать с учебно-методической литературой. <...> Из истории алгебры Любой выпускник средней школы на вопрос, чему его научили на уроках алгебры <...>
Элементы_алгебры_в_курсе_математики_для_учащихся_начальных_классов.pdf
Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования «Соликамский государственный педагогический институт» Кафедра математики и физики В. И. Кузьминова ЭЛЕМЕНТЫ АЛГЕБРЫ В КУРСЕ МАТЕМАТИКИ ДЛЯ УЧАЩИХСЯ НАЧАЛЬНЫХ КЛАССОВ Учебно-методическое пособие Соликамск СГПИ 2011
Стр.1
Введение Данное учебно-методическое пособие предназначено для студентов-бакалавров, обучающихся по направлению 050700 – «Педагогика», профиль 050707 – «Начальное образование». Рекомендуется как для очного, так и для заочного отделения. Пособие посвящено изучению одного из вопросов дисциплины «Теоретические основы и технологии начального математического образования» – методике изучения элементов алгебры в начальном курсе математики. В пособии даны краткие исторические сведения о зарождении алгебры как науки, раскрыты общие положения, связанные с изучением алгебраического материала в начальной школе. В пособии описана методика обучения младших школьников отдельным вопросам (числовые выражения, числовые равенства и неравенства, буквенные выражения, уравнения и неравенства с одной переменной), выделены типы заданий, которые необходимо использовать при уточнении представлений об основных понятиях алгебры. Восполняя недостаток в учебно-методической литературе по дисциплине «Теоретические основы и технологии начального математического образования», учебное пособие углубляет и обобщает знания студентов, позволяя сформировать правильный подход к изучению элементов алгебры и умение самостоятельно работать с учебно-методической литературой. Из истории алгебры Любой выпускник средней школы на вопрос, чему его научили на уроках алгебры, наверняка скажет: «Решать уравнения и задачи с помощью уравнений». Современные ученые придерживаются той же точки зрения на содержание алгебры. Французские математики Александр Гротендик (родился в 1928 г.) и Жан Дьедоне (родился в 1906 г.) в статье «Элементы алгебраической топологии» пишут: «Можно утверждать, что решение полиноминальных уравнений послужило исторически источником алгебры и что со времени вавилонян, индусов и Диофанта и до наших дней оно остается одной из её основных целей». Цели алгебры оставались неизменными на протяжении тысячелетий – решались уравнения: сначала линейные, потом квадратные, затем кубические, а позже уравнения еще больших степеней. Но форма, в которой описывались алгебраические результаты, менялась до неузнаваемости. Древние египтяне излагали свои алгебраические познания в числовой форме. В папирусах, которые дошли до нас, решаются задачи практического содержания: вычисляются площади земельных участков, объёмы сосудов, количества зерна и т.д. Все задачи с конкретными числовыми данными, но в некоторых из них уже проскальзывает теоретический интерес. Например, задача из папируса Кахуна (около XVIII – XVI до н.э.): «Найти два числа х и у, для которых x2 + y2 = 100 и x ч y=1÷ 4» (в современных обозначения). 3 В папирусах она решена методом «Ложного положения». Именно, если положить x=1, то тогда y = 6. Значительные успехи в развитии алгебры были достигнуты в x2 + y2 = 102, следовательно, в качестве x надо брать не 1, а 10 5: =84 y= 3 4 x +y =( )4 Древнем Вавилоне. Там решались уравнения первой, второй и даже отдельные уравнения третьей степени. Способы решения конкретных уравнений дают основания считать, что вавилоняне владели и общими правилами нахождения уравнений первой и второй степени. 4 5 и 22 2 5 . Но по условию ,
Стр.3
Все задачи и их решения излагались в словесной форме. В одной из клинописных табличек встречается такая задача: «Я вычел из площади сторону моего квадрата, это 870». Нетрудно догадаться, что речь идёт о квадратном уравнении x2 - x = 870. Но эти достижения ещё нельзя назвать наукой, поскольку общей теории не было. Совсем другой вид приняла алгебра в Древней Греции. Со времени кризиса, вызванного открытием несоизмеримых отрезков, у древних греков вся математика приобрела геометрическую форму. Древнегреческие математики работали не с числами, а с отрезками. Любые утверждения и доказательства имели право на существование только в том случае, если они давались на геометрическом языке. Например, соотношение, которое мы записываем в виде формулы (a + b)2 = a2 + 2ab + b2 , в «Началах» Евклида формируется так: «Если отрезок AB разделен точкой С на два отрезка, то квадрат, построенный на AB, равен двум квадратам на отрезках АС и СВ вместе с удвоенным прямоугольником на АС и СВ». После этого дается длинное доказательство этого факта на геометрическом языке. Геометрический подход к математике отражал, вероятно, определенные черты духовной жизни древних греков. Греки создали непревзойденные скульптуры, удивительные по своему совершенству храмы и другие архитектурные сооружения, пропорции которых строго математически выверены. Это стремление к красоте, гармоничности, соразмерности, способствовало геометризации математики. Геометрический путь был гениальной находкой античных математиков, но он сдерживал развитие алгебры. Алгебраические методы, ростки которых возникли в более ранних цивилизациях, в Древней Греции не получили развития. Выделение алгебры в самостоятельную ветвь математики произошло в арабских странах, куда после распада Римской империи переместился центр научной деятельности. К концу VIII в. в результате захватнических войск арабы покорили почти все страны Средиземноморья, а на Востоке их владения простирались до самой Индии. Многие арабские халифы для укрепления своего могущества и славы поощряли развитие наук. В Багдаде, столице халифата, создаются новые условия для работы ученых. Здесь открыто много библиотек, построен Дом мудрости, при нём оборудована прекрасная обсерватория. Арабские математики на 6 первых парах усердно изучают труды древнегреческих авторов и достижения индийских учёных. В Доме мудрости работал выдающийся узбекский учёный первой половины IX в. Ал-Хорезми. Его полное имя - Мухаммед ибн Мусса ал-Хорезми ал-Маджуси, что означает Мухаммед сын Музы из Хорезма из родов магов. Сохранились его сочинения по арифметике, астрономии, географии, календарным расчетам. Наиболее значительным является его трактат по алгебре. Здесь он впервые разработал правила преобразования уравнений. Трактат назывался «Краткая книга о восполнении и противопоставлении». В XII в. труд ал-Хорезми был переведен на латинский язык и долгое время оставался в Европе основным руководством по алгебре. Арабское название операции восполнения «ал-джебр» и дало название области математики, связанной с искусством решения уравнений. Вслед за ал-Хорезми решению уравнений посвящают свои труды многие арабские учёные. В XI в. знаменитый математик Омар Хайям описал геометрическое решение уравнений третьей степени. Занимался кубическими уравнениями и ал-Бируни. В XV в. работал замечательный математик и астроном ал-Каши. Он изучал уравнения четвертой степени. Арабов интересовало и численное значение корней. После успешного решения уравнений 3-й и 4-й степени математики пытались найти формулы решений уравнений более высоких степеней. Феррари решал уравнения 4-й степени. Эрендрид Вальтер фон Чирнгауз (1651 – 1708), Самуэль Бринг (1736 – 1798 г.г.) вели поиски решения уравнений пятой степени. Проблемой решения уравнений пятой степени в 30-е годы XVIII в. занимался величайший из математиков этого века Леонард Эйлер. Позже продолжил исследования в этом направлении другой выдающийся математик XVIII в. Жозеф Луи Лагранж. Его исследованиями теория алгебраических уравнений была поставлена на правильные рельсы: все до тех пор известное получается с единых позиций, четко выделены трудности. Большой вклад в историю решения алгебраических уравнений внесли Нильс Хенрик Абель (1802 г.р. – 1829 г.), Эварист Галуа (1811 г.р. – 1833 г.), жизнь которых оборвалась в раннем возрасте. Но труды их были не напрасны. Эти гениальные юноши построили фундамент современной алгебры. 7
Стр.4
Общая характеристика методики изучения алгебраического материала Введение элементов алгебры в начальный курс математики позволяет с самого начала обучения вести планомерную работу, направленную на формирование у детей таких важнейших математических понятий, как алгебраическое выражение (числовое выражение, буквенное выражение), равенство (числовое равенство, уравнение), неравенство (числовое неравенство, неравенство с одной переменной). Ознакомление с буквой и её использованием как символа, обозначающего отвлеченное число из известной детям области чисел, создает условия для обобщения многих из рассматриваемых в начальном курсе вопросов арифметической теории, является хорошей подготовкой к ознакомлению детей в дальнейшем с понятиями «переменная», «функция», способствует развитию у детей функционального мышления. Алгебраическая пропедевтика позволяет осуществлять преемственность в обучении алгебраическому материалу между начальной школой и средним звеном (5 – 7 кл.), готовит к усвоению материала систематического курса алгебры в среднем (7 – 9 кл.) и старшем звеньях образования. В основе организации процесса усвоения учащимися алгебраического материала лежат следующие положения: – алгебраические понятия вводятся в курс математики начальной школы в тесной взаимосвязи с изучением арифметического материала и получают свое развитие в зависимости от его содержания; – включение алгебраического материала в начальный курс математики должно, прежде всего, способствовать формированию у школьников абстрактного мышления и тем самым повышать уровень усвоения ими арифметических вопросов. Числовые выражения Числовые (арифметические) выражения входят в систему обучения математике довольно рано, как только младшие школьники начинают знакомство с цифрами как способами именования вполне определенных конкретных чисел. При этом дети делают шаги по пути овладения математической символикой и математическим языком. В то же время, записывая число определенной последовательностью цифр, ребенок начинает знакомство с отвлеченным числом. Над такими отвлеченными числами можно производить арифметические действия, независимо от природы числа. Рассматривая числа как систему знаков, следует помнить, что операции над ними подчиняются точно сформулированным правилам. В этой системе и строятся числовые выражения, они составляются из числовых знаков (имен чисел) и знаков арифметических действий. Каждое число есть числовое выражение. Если два числовых выражения соединить знаком действия, то полученная запись также есть числовое выражение. Младшие школьники знакомятся с терминами «сумма», «разность», «произведение», «частное». В словарь учащихся вводятся названия арифметических действий, их компонентов (сложение, вычитание, умножение, деление, слагаемое, вычитаемое, уменьшаемое, делимое). Помимо терминологии, они должны также усвоить и некоторые элементы математической символики, в частности, знаки действий (плюс, минус). Эта работа осуществляется при изучении смысла арифметических действий. Далее полезно провести обобщение материала. С этой целью нужно раздать детям «арифметический конструктор». Он представляет собой набор цифр, знаков арифметических действий, букв, знаков математических отношений >, <, =. Детям предлагается рассмотреть содержимое «конструктора» и распределить на группы детали. Далее учащиеся рассказывают, что они знают о каждой группе объектов. Затем детям предлагается из чисел и знаков арифметических 8 9
Стр.5
Аналогично рассматриваются 3 – 4 подобные ситуации. * В пенале 3 карандаша и 5 ручек. * В вазе 3 яблока и 5 груш. * На столе стоят 3 кружки и 5 стаканов. * На полке 3 альбома и 5 книг. Затем учитель предлагает выделить отличия и сходства ситуаций 3 + 5 , карточки выставляются на доске. Дети выполняют действия с предметами, затем строят графичеIII . Предлагается рассмотреть еще такой вид ситуаций. В нашем доме 6 этажей, а в другом на 3 этажа больше. Что несущественно? (Где находятся дома, что в них расположено и т.д.). Что существенно? (Последовательное приписывание к элементам одного множества элементов другого множества). (Множества упорядочены). Дети снова выполняют предметные действия. Учитель предлагает выложить в верхний ряд столько кругов, сколько этажей в одном доме, а в нижний на 3 круга больше. Сколько объектов стало во 2 ряду? (Больше). Дети от предметных действий переходят сначала к графическому, а затем к математическому описанию. 6 + 3. Аналогично рассматриваются 3- 4 ситуации • Для постройки башни Аня взяла 6 кубиков, а Алёна на 3 больше. • Длина одного ужа 1 метр, а другого на 2 больше. • Высота березы 6 метров, а сосны на 3 метра больше. Учитель предлагает сравнить ситуации и выяснить, чем они отличаются, а чем похожи. На доске появляется карточка 6 + 3 . (Больше на – это столько, сколько . . . да ещё). IV. Предлагается такой жизненный сюжет. Катя нарисовала 7 флажков, а Саша на 2 флажка больше. Что неважно, несущественно? (На какой бумаге рисуют дети, какого они размера и т.д.). А что важно? (Продвижение по натуральному ряду на столько шагов вправо от первого числа, каково второе число). 12 скую модель, а затем математическую модель. На доске появляется карточка 7 + 2 . Аналогично рассматриваются ещё несколько подобных ситуаций. • Таня вымыла 7 кружек, а Лена на 2 кружки больше. • Миша сорвал 7 орехов, а Антон на 2 ореха больше. • Вера сорвала с грядки 7 ягод клубники, а Катя на 2 ягодки больше. Эти ситуации сравниваются детьми. Они выделяют отличие, а затем сходство. Уточняют, что это математическое описание подобных ситуаций. Далее учитель предлагает рассмотреть все записи на карточках, которые появились на доске. Дети учатся видеть отличие и сходство. (Это числовые выражения. Числа соединены одним знаком арифметического действия +, следовательно, это просто числовые выражения). Дети вспоминают, что такие выражения называются суммой чисел. Используются словарные карточки, выделяются компоненты. сумма 1е 2е прибавить слагаемое слагаемое Учатся читать выражения по-разному: * к ; * к * к увеличить на плюс 13 ; ; 7 и 2 характеризуют место в последовательности, на котором остановились действия по рисованию флажков, причем Саша продвинулся на 2 флажка больше. .
Стр.7

Облако ключевых слов *


* - вычисляется автоматически
.
.