Национальный цифровой ресурс Руконт - межотраслевая электронная библиотека (ЭБС) на базе технологии Контекстум (всего произведений: 535998)
Консорциум Контекстум Информационная технология сбора цифрового контента
Уважаемые СТУДЕНТЫ и СОТРУДНИКИ ВУЗов, использующие нашу ЭБС. Рекомендуем использовать новую версию сайта.

Дополнительные вопросы курса теории вероятностей (160,00 руб.)

0   0
Первый авторМихайлова О. В.
АвторыОблакова Т. В., Приказчиков Д. А.
ИздательствоМ.: Изд-во МГТУ им. Н.Э. Баумана
Страниц76
ID287741
АннотацияКратко изложены основные определения и теоремы курса теории вероятностей. Подробно рассмотрены многомерные распределения, в том числе нормальный закон и его свойства. Изложены примеры на вычисление плотности вероятностей функции от случайной величины (случайного вектора), включая нахождение композиции законов распределения. Приведено 30 вариантов типового расчета.
Кем рекомендованоУчебно-методической комиссией НУК «ФН» МГТУ им. Н.Э. Баумана
Кому рекомендованоДля студентов II и III курсов машиностроительных и приборостроительных специальностей, изучающих теорию вероятностей.
ISBN---
УДК519.2
ББК22.171
Михайлова, О.В. Дополнительные вопросы курса теории вероятностей [Электронный ресурс] : метод. указания к выполнению домашнего задания / Т.В. Облакова, Д.А. Приказчиков, О.В. Михайлова .— М. : Изд-во МГТУ им. Н.Э. Баумана, 2011 .— 76 с. — Режим доступа: https://rucont.ru/efd/287741

Предпросмотр (выдержки из произведения)

Михайлова, Т.В.Облакова, Д.А.Приказчиков Дополнительные вопросы курса теории вероятностей Методические указания к выполнению домашнего задания Москва Издательство МГТУ им. <...> М69 Дополнительные вопросы курса теории вероятностей : методические указания к выполнению домашнего задания / О.В.Михайлова, Т.В.Облакова, Д.А.Приказчиков. <...> Изложены примеры на вычисление плотности вероятностей функции от случайной величины (случайного вектора), включая нахождение композиции законов распределения. <...> Множество (пространство) элементарных событий Ω—соВероятностной моделью, или вероятностным пространством, вокупность элементов  , представляющих собой элементарные исходы опыта (элементарные события). <...> Пример 1: 1) при однократном подбрасывании игральной кости элементарным исходом считают выпадение на верхней грани определенного числа очков; 2) при работе датчика случайных чисел элементарный исход— выпавшее число; 3) контролер готовой продукции измеряет некоторые параметры изделия, при этом результат (совокупность нескольких чисел) также можно считать элементарным исходом. <...> Таким образом, события—это мноAi либо Ai или 3 Приведем еще несколько определений: 1) если  ятствует событию A; 2) A и B называются несовместными событиями, если A∩B = ∈A, то говорят, что элементарный исход =∅; 3) определим разность событий A и B как разность соответствующих множеств A\B ≡A∩B; согласно условиям 2 и 3 разность событий является событием; 4) говорят также, что событие A влечет событие B (наступление события A влечет наступление события B), если A⊆B. <...> Множество 6) если B1⊇B2⊇B3⊇. . . так, что  i элементарных исходов Ω конечно, и все исходы считаются равновероятными, т. е. каждому элементарному исходу приписывается вероятность 1 n , где n=|Ω|. <...> Рассмотрим опыт, заключающийся в двукратном подбрасывании игральной кости. <...> Вычислим вероятность события A={сумма выпавших очков меньше 6}. <...> На плоскость, разлинованную прямыми, параллельными оси Ox и отстоящими <...>
Дополнительные_вопросы_курса_теории_вероятностей.pdf
УДК 519.92 ББК 22.171 М69 Михайлова О.В. М69 Дополнительные вопросы курса теории вероятностей : методические указания к выполнению домашнего задания / О.В.Михайлова, Т.В.Облакова, Д.А.Приказчиков.—М. : Изд-во МГТУ им. Н.Э.Баумана, 2011.—73, [3] с. : ил. Кратко изложены основные определения и теоремы курса теории вероятностей. Подробно рассмотрены многомерные распределения, в том числе нормальный закон и его свойства. Изложены примеры на вычисление плотности вероятностей функции от случайной величины (случайного вектора), включая нахождение композиции законов распределения. Приведено 30 вариантов типового расчета. Для студентов II и III курсов машиностроительных и приборостроительных специальностей, изучающих теорию вероятностей. Рекомендовано Учебно-методической комиссией НУК «ФН» МГТУ им. Н.Э. Баумана. УДК 519.92 ББК 22.171 - МГТУ им. Н.Э.Баумана, 2011 c
Стр.2
Оглавление 1. Общие вопросы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 § 1. Вероятностная модель . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 § 2. Условные вероятности. Независимые события. Формулы полной вероятности и Байеса . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 § 3. Схема Бернулли и предельные теоремы . . . . . . . . . . . . . . . . . . 15 § 4. Случайные величины и их характеристики . . . . . . . . . . . . . . . . 20 § 5. Случайные векторы. Независимые случайные величины . . . . 25 2. Дополнительные вопросы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 § 1. Функции случайных величин . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 § 2. Зависимые случайные величины. Условные законы распределения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 § 3. Многомерный нормальный вектор и его свойства . . . . . . . . . . 50 3. Варианты домашнего задания . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Задача № 1. Вычисление вероятностей в классической схеме . . . . 52 Задача № 2. Геометрические вероятности . . . . . . . . . . . . . . . . . . . . . 55 Задача № 3. Условные вероятности . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Задача № 4. Формулы полной вероятности и формула Байеса . . . . 57 Задача № 5. Интегральная теорема Муавра—Лапласа . . . . . . . . . . 61 Задача № 6. Основные законы распределения и их характеристики . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Задача № 7. Двумерный закон распределения . . . . . . . . . . . . . . . . . 68 Задача № 8. Нормальный случайный вектор . . . . . . . . . . . . . . . . . . 69 Задача № 9. Функция от случайного вектора . . . . . . . . . . . . . . . . . . 70
Стр.74