Национальный цифровой ресурс Руконт - межотраслевая электронная библиотека (ЭБС) на базе технологии Контекстум (всего произведений: 634620)
Контекстум
.
Оптика атмосферы и океана

Оптика атмосферы и океана №4 2010 (154,00 руб.)

0   0
Страниц77
ID155630
АннотацияЖурнал посвящен проблемам атмосферной оптики, включая спектроскопию, турбулентность, нелинейные явления в атмосфере и океане. Кроме того, к основным направлениям журнала относятся дистанционное зондирование атмосферы и подстилающей поверхности с космических, наземных, судовых и самолетных станций; исследования, связанные с климатом и экологией, а также созданием, испытанием и применением приборов и методов для таких исследований, включая обработку получаемой информации (обратные задачи, передача изображений, адаптивная оптика, лазеры, лидары.
Оптика атмосферы и океана : Научный журнал .— Новосибирск : Издательство Сибирского отделения Российской академии наук .— 2010 .— №4 .— 77 с. — URL: https://rucont.ru/efd/155630 (дата обращения: 19.04.2024)

Предпросмотр (выдержки из произведения)

«Оптика атмосферы и океана», 23, № 4 (2010) ОПТИКА КЛАСТЕРОВ, АЭРОЗОЛЕЙ И ГИДРОЗОЛЕЙ УДК 519.216.24, 519.6 Monte Carlo simulation of angular characteristics for polarized radiation in water-drop and crystal clouds Sergey M. Prigarin1, Ulrich G. Oppel2 1 Institute of Comp. Mathematics and Math. <...> In the paper we present the results of computational experiments aimed to define the angular distributions for the polarized radiation scattered in a cloudy layer. <...> The angular distributions for Stokes parameters were computed by Monte Carlo method for different optical models of water-drop and crystal clouds. <...> Key words: polarized radiation transfer, water-drop and crystal clouds, Monte Carlo simulation, angular distributions, particle shape and size. <...> By computational experiments we studied angular distributions for the polarized radiation scattered upward and downward by water-drop and crystal clouds. <...> Such scattering function g(n1, n, rn) coincides with the first element of the vector Fig. 1 represents the shapes of angular distributions of intensity of radiation reflected upward and the values of integral albedo for the six cloud models with the same optical thickness equal to 1 when the source is in zenith. <...> Angular distributions for the upward radiation for models of water-drop (upper row) and ice (lower row) clouds, optical thickness = 1, source zenith angle = 0° For the same input parameters Fig. 2 represents the angular distributions of the degree of polarization Q2 + U 2 + V2 I for the upward radiation. <...> Degree of polarization for the upward radiation distributed on the dome of the sky for models of water-drop (upper row) and ice (lower row) clouds, optical thickness = 1, source zenith angle = 0°. <...> Angular distributions for the upward radiation for models of water-drop (upper row) and ice (lower row) clouds, optical thickness = 1, source zenith angle = 30° model C1 [0.58] model C2 [0.48] imaginary jumps of the directions from + 90 to 90 degrees). <...> В рамках дымового эксперимента в большой аэрозольной камере ИОА СО РАН (объемом 1800 м3) с помощью автоматизированного поляризационного спектронефелометра проведены измерения коэффициента направленного светорассеяния (j, i) дымовой смеси для 5 <...>
Оптика_атмосферы_и_океана_№4_2010.pdf
«Îïòèêà атмосферы и îêåàíà», 23, ¹ 4 (2010) ОПТИКА КЛАСТЕРОВ, АЭРОЗОЛЕЙ И ГИДРОЗОЛЕЙ УДК 519.216.24, 519.6 Monte Carlo simulation of angular characteristics for polarized radiation in water-drop and crystal clouds Sergey M. Prigarin1, Ulrich G. Oppel2 1 Institute of Comp. Mathematics and Math. Geophysics, SB RAS, pr. Academician Lavrentyev, 6, Novosibirsk, 630090, Russia Novosibirsk State University, Pirogova str., 2, Novosibirsk, 630090, Russia 2 Institute of Mathematics, Ludwig-Maximilian University of Munich, Theresienstr., 39, Ä80333, Munich, Germany Поступила в редакцию 20.12.2009 ã. In the paper we present the results of computational experiments aimed to define the angular distributions for the polarized radiation scattered in a cloudy layer. The angular distributions for Stokes parameters were computed by Monte Carlo method for different optical models of water-drop and crystal clouds. The ulterior objective of the research is to develop effective techniques to study the particles shape and size by measuring angular characteristics of the scattered radiation emanating from clouds. Key words: polarized radiation transfer, water-drop and crystal clouds, Monte Carlo simulation, angular distributions, particle shape and size. Introduction The role of clouds in the global climate system is important but not well studied. Cloud feedbacks are the largest source of uncertainty in estimates of radiation balance and climate sensitivity, therefore a better understanding and representation of radiation transfer processes in clouds is of paramount importance for climate science. On the other hand, the adequate optical models of clouds are necessary to investigate properties of cloudiness by active and passive optical remote sensing. Our paper deals with numerical modeling of the solar radiation transfer in the atmosphere clouds taking into account specific features caused by polarization of light. By computational experiments we studied angular distributions for the polarized radiation scattered upward and downward by water-drop and crystal clouds. The angular distributions were computed for the Stokes parameters, degree of polarization, and direction of preferable polarization. For computations we used Monte Carlo method and several optical models of clouds. The ultimate aim of the research is to develop effective techniques to study phase structure of clouds, shape and size of particles by measuring characteristics of the scattered radiation. 1. Mathematical model and Monte Carlo algorithms Assume that an optically isotropic scattering medium consists of particles randomly oriented in space, extinction coefficient and single scattering albedo in the medium does not depend on light polarization, and a field of reference-vectors () ρω is fixed, i.e. for every direction ω ∈ Ω = {(a, b, ñ} ∈ ∈ R3: a2 + b2 + c2 = 1} there is defined a unit vector ρ(ω) orthogonal to ω. Then the process of stationary polarized radiation transfer in the scattering medium may be described by integral equations of the second kind with the generalized kernel S[ρ](r, ω) =∫∫ rr 3 e Ω ×ρ ω δ ω − ′ ′ R −τ ′rr − ′ (, ) 2 S rdr drr ′′ ′− [](, ) ω′ ′ + S0[ρ](r, ω), − ' rr   r′, r ∈ R3, ω′, ω ∈ Ω, ρ = ρ(ω), ρ′ = ρ(ω′). (1) Here S[ρ](r, ω) is the Stokes vector (we shall consider Stokes vectors of the type (I,Q,U,V)) with respect to the reference vector ρ = ρ(ω) for the radiation at the point r spreading in the direction ω, q(r′) is the single scattering albedo at the point r′, σ(r′) is the extinction coefficient at the point r′, δ is the delta-function, S0[ρ](r,ω) is the Stokes vector of the source at the point r in the direction ω, τ(r′, r)= ∫σω ( ( ), ) l segment [r′, r], r(s) = r′ + s(r – r′)/l, l = rr , − ′ 0 M[ρ′, ρ](ω′, ω, r′) is the 4¥4-phase matrix of the medium at the point r′ (ω′ is the direction before scattering, and ω is the direction after scattering): M[ρ′, ρ](ω′, ω, r′) = L[ρ, ρ*]–1M(ω′, ω, r′) L[ρ′, ρ*], Monte Carlo simulation of angular characteristics for polarized radiation in water-drop and crystal clouds 243 rs ds is the optical length of the qr r M r () () [ , ]( ′, ′′ ′σρ ′ Ч ρ ω ω, )
Стр.1