Национальный цифровой ресурс Руконт - межотраслевая электронная библиотека (ЭБС) на базе технологии Контекстум (всего произведений: 635050)
Контекстум
Руконтекст антиплагиат система
Вестник Московского университета. Серия 1. Математика. Механика  / №5 2012

Почти примитивные элементы свободных неассоциативных (анти)коммутативных алгебр малых рангов (60,00 руб.)

0   0
Первый авторКлимаков
Страниц6
ID360571
АннотацияВ работе получены критерии почти примитивности однородных элементов и построены алгоритмы проверки почти примитивности однородных элементов в свободных неассоциативных коммутативных и антикоммутативных алгебрах ранга 1 и 2.
УДК512.554
Климаков, А.Н. Почти примитивные элементы свободных неассоциативных (анти)коммутативных алгебр малых рангов / А.Н. Климаков // Вестник Московского университета. Серия 1. Математика. Механика .— 2012 .— №5 .— С. 21-26 .— URL: https://rucont.ru/efd/360571 (дата обращения: 06.05.2024)

Предпросмотр (выдержки из произведения)

Поступила в редакцию 27.12.2010 УДК 512.554 ПОЧТИ ПРИМИТИВНЫЕ ЭЛЕМЕНТЫ СВОБОДНЫХ НЕАССОЦИАТИВНЫХ (АНТИ)КОММУТАТИВНЫХ АЛГЕБР МАЛЫХ РАНГОВ А. В. <...> Климаков1 В работе получены критерии почти примитивности однородныхэлементов и построены алгоритмы проверки почти примитивности однородныхэлементов в свободных неассоциативныхкоммутативных и антикоммутативных алгебрахранга 1 и 2. <...> Ключевые слова: свободные неассоциативные коммутативные алгебры, свободные неассоциативные антикоммутативные алгебры, примитивные элементы, почти примитивные элементы. <...> Criteria for homogeneous elements to be almost primitive are obtained and algorithms to recognize homogeneous almost primitive elements are constructed for free nonassociative commutative and anticommutative algebras of rank 1 and 2. <...> Key words: free nonassociative commutative algebras, free nonassociative anticommutative algebras, primitive elements, almost primitive elements. <...> Тогда факторалгебра A−(X)= F(X)/I —свободная неассоциативная коммутативная алгебра с множеством свободных порождающих X.Пусть J —двусторонний идеал алгебры F(X), порожденный элементами {ab + ba | a, b ∈ F(X)}. <...> Тогда факторалгебра A+(X)= F(X)/J —свободная неассоциативная антикоммутативная алгебра с множеством свободных порождающих X.Вслучае charK =2 свободная антикоммутативная алгебра A+(X) совпадает со свободной коммутативной алгеброй A−(X), поэтому мы будем рассматривать свободные антикоммутативные алгебры над полем характеристики, отличной от то a>b,где (a) —степень элемента a. <...> Построим индуктивно множества W−, W+ всех регулярных коммутативных и антикоммутативных одночленов для соответствующих алгебр: X ⊂ W−(X ⊂ W+); w ∈ W−(w ∈ W+), если w = uv, u и v —регулярные коммутативные (антикоммутативные) одночлены и u  v (u>v). <...> [2]), единственное выражение элемента алгебры a ∈ A−(X) (A+(X)) в виде линейной комбинации регулярных одночленов из W− (W+) будем называть регулярным (каноническим) разложением (представлением); степенью (весом, длиной) элемента a будем называть (a) —наибольшую подмножеством M. <...> Подмножество M = {ai} ненулевых элементов алгебры F называется редуцированным, если для любого i <...>