УДК 621.396.6 Т99 ББК 32.84

Рецензенты:

Институт проблем управления сложными системами Российской академии наук - ИПУСС РАН, директор института доктор технических наук Боровик С.Ю.

Зав. кафедрой информационных систем и технологий Самарского национального исследовательского университета им. академика С.П. Королева доктор технических наук, профессор Прохоров С.А.

Т99 Тяжев А.И. Теория автоматического управления. Учебник. -

Рассмотрены принципы и алгоритмы систем автоматического управления, описан математический аппарат, используемый для описания аналоговых и цифровых систем управления, рассмотрены типовые звенья систем автоматического управления, рассмотрены различные критерии устойчивости замкнутых систем управления, а также ошибки в следящих системах управления.

Описаны цифровые системы управления с ЭВМ в качестве управляющего устройства, особенности их работы и программирования, а также параметрические и нелинейные системы автоматического управления. Приведены задачи по курсу с ответами, а также два задания на курсовую работу с изложением порядка выполнения курсовой работы.

ISBN 978-5-904029-64-7

Ä

Содержание курса «Теория автоматического управления»

Список сокращений и обозначений	. 6
Введение	
1. Основные понятия и определения в теории автоматического управления	8
1.1. Глоссарий теории управления	
1.2 Разновидности схем управления	9
1.3. Разновидности алгоритмов управления	.10
1.4. Основные виды регуляторов в системах автоматического управления	15
2. Математическое описание систем автоматического управления	16
2.1. Прямое и обратное преобразования Лапласа	16
2.2. Основные теоремы преобразования Лапласа	
2.3. Описание САУ с помощью дифференциальных уравнений	.19
2.4. Классификация дифференциальных уравнений и САУ по коэффициентам	.19
2.5. Передаточная функция и ее связь с дифференциальным уравнением	20
2.6. Описание САУ в пространстве состояний. Последовательная схема	
2.7. Описание САУ в пространстве состояний. Параллельная схема	24
3. Основные характеристики систем автоматического управления	27
3.1. Временные характеристики	27
3.1.1. Переходная характеристика	.27
3.1.2. Импульсная характеристика	
3.2. Частотные характеристики	
3.2.1. Гармонический и комплексный сигналы	
3.2.2. Комплексный коэффициент передачи. Годограф ККП	
3.2.3. Связь между ККП и импульсной характеристикой	
3.2.4. Амплитудно-частотная и фазочастотная характеристики	
3.2.5. Логарифмические АЧХ и ФЧХ	
4. Элементы систем автоматического управления	
4.1. Сведения из теории электрических цепей и усилителей	
4.2. Типовые звенья САУ и их характеристики	
4.2.1. Пропорциональное звено	
4.2.2. Интегратор	
4.2.3. Дифференциатор	
4.2.4. Инерционное звено	
4.2.5. Дифференцирующая цепь	
4.2.6. Форсирующее звено	
4.2.7. Корректирующее звено с отставанием по фазе	
4.2.8. Корректирующее звено с опережением по фазе	
4.2.9. Звено второго порядка	
4.2.10. Неминимально-фазовые звенья	
4.3. Исполнительные устройства	
4.3.1. Электродвигатели постоянного тока	
4.3.2. Асинхронные электродвигатели переменного тока	
4.3.3. Шаговые электродвигатели	
4.4. Вспомогательные устройства	55

			Ä
--	--	--	---

4.4.1. Тахогенераторы	55
4.4.2. Сельсины	
4.5. Детекторы	56
4.5.1. Фазовые детекторы	56
4.5.2. Амплитудные детекторы	58
4.5.3. Частотные детекторы	60
5. Передаточные функции сложных схем и устойчивость систем автомат	
управления	62
5.1. Передаточные функции при различных схемах соединения звеньев	62
5.1.1. Последовательное соединение звеньев.	62
5.1.2. Параллельное соединение звеньев.	
5.1.3. Соединение звеньев по схемам с обратными связями	
5.1.4. Передаточная функция многоконтурных систем	64
5.2. Признак и условие устойчивости систем автоматического управления	
5.3. Критерий устойчивости Гурвица	
5.4. Критерий устойчивости Найквиста	
5.5. Определение устойчивости замкнутой системы по АЧХ и ФЧХ (по	
ЛФЧХ) разомкнутой системы	
5.5.1. Запасы устойчивости по фазе и по усилению	
5.5.2. Связь между частотными характеристиками разомкнутой и за	імкнутой
системы	
5.5.3. Показатели переходного процесса.	
5.6. Устойчивость замкнутой системы с линией задержки	
6. Ошибки в замкнутых системах автоматического управления	
6.1. Статическая ошибка	
6.2. Динамические ошибки	
6.3. Способы определения коэффициентов ошибок	
6.4. Способы включения корректирующих звеньев	
6.5. Разновидности корректирующих обратных связей	
7. Следящие системы при случайных входных воздействиях	
7.1. Среднеквадратическая ошибка системы	
7.2. Эффективная полоса пропускания системы	
7.3. Формирующие фильтры	
7.4. Минимизация дисперсии ошибки вариацией параметров следящей сист	
7.5. Оптимальный фильтр Винера	
7.6. Оптимальный фильтр Калмана	
8. Цифровые системы автоматического управления	
8.1. Структурная схема цифровых систем. Достоинства и недостатки	
8.2. Математическое описание цифровых систем управления	
8.2.1. Дискретное преобразование Лапласа. Z-преобразование	
8.2.2. Основные теоремы Z - преобразования	
8.2.3. Системные функции	
8.2.4. Связь между дифференциальными и разностными уравнениями	
8.2.5. Связь между системными функциями и разностными уравнениями	
8.2.6. Связь между передаточными и системными функциями	
8.2.7. Комплексный коэффициент передачи, АЧХ и ФЧХ цифровых систем	101

Ä

4

^	

Ä

8.2.8. Переходная и импульсная характеристики цифровых систем	103
8.2.9. Описание цифровых систем в пространстве состояний	105
8.3. Типовые звенья цифровых систем управления	
8.4. Три эквивалентные схемы цифровых систем	
8.5. Устойчивость цифровых систем	110
8.5.1 Признак устойчивости	
8.5.2 Условие устойчивости	
8.5.3 Критерий устойчивости Гурвица	111
8.5.4. Критерий устойчивости Найквиста	
8.6. Ошибки в замкнутых цифровых системах управления	
9. Цифровые системы управления с ЭВМ в качестве управляющих устр	
9.1. Структурная схема ЦСУ с ЭВМ и назначение блоков	
9.2. Особенности управляющих ЭВМ	
9.3. Алгоритмические языки программирования роботов и станков	
с числовым программным управлением	119
9.3.1. Общие сведения	119
9.3.2. Простые операторы	119
9.3.3. Операторы определения геометрических объектов	120
9.3.4. Операторы движения инструмента вдоль линии	121
9.3.5. Макрокоманды	121
9.3.6. Вспомогательные операторы	122
10. Нелинейные системы автоматического управления	123
10.1. Методы анализа нелинейных систем	123
10.2. Виды нелинейностей характеристик нелинейных элементов	124
10.3. Применение метода гармонической линеаризации	125
10.4. Определение устойчивости и параметров автоколебаний	
в замкнутых нелинейных системах	127
10.5. Влияние нелинейных элементов с гистерезисом на устойчивость	
замкнутых систем	129
11.Параметрические системы автоматического управления	132
11.1 Примеры параметрических систем управления	132
11.2. Применение фазовых портретов для исследования	цифровых
параметрических систем	135
12. Задачи по курсу	139
13. Задание №1 на курсовую работу	
14. Задание №2 на курсовую работу	155
Список литературы	164