

МарГТУ

Марийский государственный технический университет

С. П. ИВАНОВ

ИЗГИБ ПРЯМОУГОЛЬНЫХ ПЛАСТИН

Учебное пособие

Йошкар-Ола МарГТУ 2011

• • •

Ä

УДК 624.04(07) ББК 38.112 И 20

Репензенты:

зав. кафедрой прочности материалов Российского университета дружбы народов, профессор, д-р техн. наук С. Н. Кривошапко; зав. кафедрой сопротивления материалов и теории упругости Казанского государственного архитектурно-строительного университета, профессор, д-р физ.-мат. наук Р. А. Каюмов

Печатается по решению редакционно-издательского совета МарГТУ

Иванов, С. П.

И 20 Изгиб прямоугольных пластин: учебное пособие / С. П. Иванов. - Йошкар-Ола: Марийский государственный технический университет, 2011. – 96 с. ISBN 978-5-8158-0843-0

Даются основные сведения по разделу дисциплины «Теории упругости», связанные с расчетами прямоугольных пластин на изгиб. Изложение теоретического материала сопровождается подробными объяснениями и примерами расчетов.

студентов, магистрантов, аспирантов и преподавателей строительных и других технических специальностей.

> УДК 624.04(07) ББК 38.112

ISBN 978-5-8158-0843-0

© Иванов С.П., 2011

© Марийский государственный технический университет, 2011

Ä

ПРЕДИСЛОВИЕ

Пространственные системы являются наиболее экономичными и находят широкое применение в различных областях техники и строительства, поэтому инженерыконструкторы должны быть обязательно знакомы с методами их расчета.

видов пространственных систем пластинчатые системы в состав которых входит прямоугольная пластинка, которая имеет широкое применение. Не случайно знание методов расчета пластин также необходимо современному инженеру. В имеющейся учебной литературе недостаточно освещен этот вопрос. В учебниках по теории упругости, как основные дифференциальные правило, приводятся ЛИШЬ уравнения и классические методы их решения в двойных и одинарных тригонометрических рядах. В учебной литературе практически не рассматриваются методы решения двумерных задач вариационными способами, хотя именно эти методы зачастую используются сейчас для расчета пластинчатых систем.

Данное учебное пособие призвано в известной мере восполнить указанный пробел. На примере задачи изгиба прямоугольной пластинки излагается содержание основных вариационных методов решения двумерных задач теории упругости.

ОГЛАВЛЕНИЕ

ПР	ЕД	ИСЛОВИЕ	3
BB	вЕД	ЕНИЕ	4
1.	TE	ОРИЯ ИЗГИБА ПЛАСТИНОК	6
1	1.1.	Постановка задачи, основные гипотезы	6
1	1.2.	Связь между перемещениями и деформациями	
Ι	тлас	тинки	8
1	1.3.	Связь между деформациями и напряжениями	9
1	1.4.	Условия равновесия пластинки	. 13
1	1.5.	Основное дифференциальное уравнение равновесия	. 15
1	1.6.	Постановка граничных условий	. 16
2.	PA	СЧЕТ ПЛАСТИНОК С ИСПОЛЬЗОВАНИЕМ	
TP	ЧΓ	ОНОМЕТРИЧЕСКИХ РЯДОВ	. 24
2	2.1.	Решение в двойных тригонометрических рядах	
(реп	ıение Навье)	. 24
2	2.2.	Решение в одинарных тригонометрических рядах	
(реп	ıение Леви)	. 32
3.	BA	РИАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ	
и3	ги	БА ПЛАСТИН	. 38
3	3.1.	Вариационный метод Ритца	. 38
3	3.2.	Метод Бубнова-Галеркина	40
		Вариационный метод Власова-Канторовича	

3.3.1. Постановка задачи и внутренние усилия			
в пластине	43		
3.3.2. Дифференциальные уравнения равновесия	45		
3.3.3. Постановка граничных условий	47		
3.3.4. Примеры решения задач вариационным методом			
Власова - Канторовича	48		
3.3.5. Задание по расчету пластин	66		
3.4. Обобщенный вариант метода Власова-Канторовича	69		
3.5. Алгоритм решения задачи численным методом	83		
ЗАКЛЮЧЕНИЕ	86		
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	88		
Приложение 1. Блок-схема программы			
Приложение 2 Программа для расчета пластины	91		

• • • •

Ä

Учебное издание

ИВАНОВ Сергей Павлович

ИЗГИБ ПРЯМОУГОЛЬНЫХ ПЛАСТИН

Учебное пособие

Редактор Л. С. Емельянова

Компьютерная верстка

А. С. Иванова

Подписано в печать 20.04.11. Формат $60\times84^1/_{16}$. Бумага офсетная. Печать офсетная. Усл. печ. л. 5,58. Тираж 120 экз. Заказ № 4522.

Марийский государственный технический университет 424000 Йошкар-Ола, пл. Ленина, 3

Редакционно-издательский центр Марийского государственного технического университета 424006 Йошкар-Ола, ул. Панфилова, 17

• • • •

Ä