

В С Е Р О С С И Й С К И Й научно-практический журнал

4 • 2010

#### Главный редактор:

Кулов Н.Н.

д.т.н., проф., заместитель председателя Научного совета РАН по научным основам химической технологии, вице-президент Российского химического общества им. Д.И. Менделеева

#### Заместитель главного редактора: Мельников И.О.

к.х.н., заведующий сектором прикладной экологии воды Института общей и неорганической химии им. Н.С. Курнакова РАН

#### Выпускающий редактор:

к.б.н., ст.н.с. Шаги-Мухаметова Ф.Ф.

### Координатор проекта по России, странам СНГ и Восточной Европы: Бондаренко А.А.

Редакционная коллегия:

д.х.н., проф. Артемов А.В.;

д.т.н., проф. Барзов А.А.;

к.х.н., проф. Беренгартен М.Г.;

к.х.н. Бусыгина Н.С.;

к.х.н., доц. Глубоков Ю.М.;

д.т.н., проф. Десятов А.В.;

к.х.н. Елинсон И.С.;

д.т.н., проф. Каграманов Г.Г.;

к.б.н., ст.н.с. Камзолова С.В.

проф. Кролли О.А.;

к.х.н. Куцева Н.К.;

д.т.н., проф. Лаптев А.Г.;

к.ф.-м.н. Пацаева С.В.,

д.б.н. Решетилова Т.А.;

д.т.н., проф. Сироткин А.С.;

Журнал включен в Перечень ведущих рецензируемых научных журналов, рекомендованных Высшей аттестационной комиссией для публикации основных научных результатов диссертаций на соискание ученых степеней кандидата и доктора наук.

Журнал зарегистрирован Федеральной службой по надзору в сфере массовых коммуникаций, связи и охраны культурного наследия. Свидетельство о регистрации СМИ ПИ № ФС77-31640 от 10.04.2008 г.

АДРЕС ДЛЯ ПИСЕМ:

117049, г. Москва, ул. Крымский вал, д. 8

ТЕЛ./факс: (495) 648-6241

E-MÁIL:

editor@watchemec.ru

(по вопросам публикации статей),

market@watchemec.ru

(по вопросам размещения рекламы и подписки), info@watchemec.ru

(по общим вопросам)

За достоверность сведений, указанных в рекламных объявлениях, ответственность несут рекламодатели. За достоверность приведенных в статьях результатов исследований ответственность несут авторы публикации. Точка зрения редакции может не совпадать с мнением авторов.

мпенлем авторов.
При перепечатке ссылка на журнал «ВОДА: Химия и экология» обязательна.

Отпечатано в типографии ЗАО «Корпорация Знак».

Тираж 3000 экз.

© ООО Издательство «Креативная экономика», 2010.

Дизайн и компьютерная верстка – Егоров Г.Д., Столбова М.С.

#### СОДЕРЖАНИЕ

#### Вопросы экологии

2 Н.М. Новикова, Н.С. Давыдова •

Гидрохимический режим прудов при их разном использовании на территории Воронежской области

#### Технологии промышленной и бытовой очистки вод

9 В.И. Новак, Г.Ю. Гольберг •

Исследование селективной флокуляции тонкодисперсных угольных шламов

14 Обзор патентов

#### Гидробиология

18 И.П. Соляникова, Е.И. Коновалова, Е.С. Шумкова, Е.Г. Плотникова, Л.А. Головлева ◆

Бактерии рода Rhodococcus – перспективные деструкторы устойчивых поллютантов для очистки сточных вод

**27** О программе Международного водного форума ЭКВАТЭК-2010

#### Химия воды и водных растворов

31 А.И. Мирошников, А.Ю. Иванов •

Комбинационное рассеяние света электрохимически активированной бидистиллированной водой после трековой мембраны

#### История воды

36 В.З. Григорьева ♦

Вклад русских химиков в развитие спиртовой и водочной промышленности России в XIX – начале XX века. Методы очистки воды, спирта и хлебного вина

- 44 Анонс конференций
- 46 Правила оформления статей для публикации в журнале «ВОДА: ХИМИЯ И ЭКОЛОГИЯ»

# ГИДРОХИМИЧЕСКИЙ режим прудов при их РАЗНОМ ИСПОЛЬЗОВАНИИ

## на территории

## Воронежской области

Наблюдения на прудах разного использования: на деревенском пруду, прудах товарного и любительского рыболовства — на территории Воронежской области в течение 2006-2008 гг. показали, что их воды пресные, но по основным гидрохимическим показателям превышают ПДК, установленные для воды рыбохозяйственных водоемов, а по содержанию биогенных элементов могут быть отнесены к категории гипертрофных. Многочисленные пруды, созданные в верховьях малых рек — притоков Дона, вносят свой существенный негативный вклад в формирование качества его вод.

Введение

ерритория Воронежской области расположена в бассейне Верхнего и Среднего Дона и относится к регионам с невысокой обеспеченностью населения возобновляемыми ресурсами речного стока. Этот дефицит усиливается низким качеством речных вод (значения ИЗВ в 1990-х годах на больших и средних реках были выше 1), в связи с чем на территории создается напряженная<sup>1</sup> гидроэкологическая ситуация [1]. В условиях широкого развития сельскохозяйственного производства низкое качество воды имеют не только крупные и средние, но и малые реки – основная составляющая гидрографической сети этой территории. Показатели минерализации, сульфатов, аммонийного азота, нитратов, фосфатов их вод превышают ПДК для питьевого водоснабжения и рыбохозяйственных целей в несколько раз [2]. Многочисленные пруды, созданные в верховьях малых рек [3], вносят свой существенный негативный вклад в форН.М. Новикова\*, д.г.н., профессор, заведующая лабораторией динамики наземных экосистем под влиянием водного фактора, Институт водных проблем РАН

**Н.С. Давыдова,** аспирантка Института водных проблем РАН

мирование качества их воды. Однако этот вопрос до сих пор остается слабо освещенным, в связи с чем изучались особенности химизма прудов при разном их использовании.

#### Материалы и методы исследования

ля выполнения поставленной задачи на территории Воронежской области были выбраны 3 пруда, близкие по ландшафтным условиям их заложения (балочные), но расположенные в разных ландшафтных районах, а потому отличающиеся по условиям формирования водного режима и характеру использования. Пруд товарного рыбоводства расположен на юго-западе области, Меловом юге (МЮ), в долине р. Богучар – приток первого порядка р. Дон, в с. Лосево Павловского района, его размеры 800×600 м<sup>2</sup>. Вода из пруда ежегодно осенью полностью сбрасывается в реку, весной вновь наполняется и зарыбляется карпом, сазаном, реже – толстолобиком и белым амуром. Для увеличения кормности водоема используются специальные подкормки и навоз. Пруд, используемый для целей любительского рыболовства и рекреации, располагается на северо-западе области, Известняковом севере (ИС), в глубокой степной балке на реке Трещевка, относящейся к бассейну р. Ведуга, - притоку первого порядка р. Дон. Размеры пруда  $600 \times 2000 \text{ м}^2$ . Здесь также производится рыборазведение с ежегодным полным спуском водоема. Кормность искусственно повышается за счет специальных подкормок. Пруд комплексного назначения (деревенский) создан в балке с небольшим постоянным водотоком в Новохоперском районе в деревне Сорокино, в бассейне р. Хопер на востоке области, в Окско-Донском плоскоместье (ОДМ). Его размеры 400×70 м<sup>2</sup>. Он используется для хозяйствен-



 $<sup>^1</sup>$  Оценивается на основании расчета ИЗВ. При ИЗВ меньше 1 –удовлетворительная; от 1 до 2,5 – напряженная; от 2,5 до 4  $\,-\,$  конфликтная; от 4 до 6  $\,-\,$  кризисная; более 6  $\,-\,$  катастрофическая

<sup>\*</sup> Адрес для корреспонденции: nmnovikova@gmail.com

ных нужд местного населения (полив приусадебных участков, водопой скота, рыболовство, рекреация и пр.).

На указанных прудах с апреля по сентябрь в 2006-2008 гг. проводился отбор проб воды с периодичностью 1-2 раза в месяц согласно установленным методикам [4, 5]. Получены основные общие и суммарные показатели, характеризующие качество вод: (минерализация, электропроводность, цветность, водородный показатель, окисляемость перманганатная и бихроматная), состав органических и неорганических веществ в водных системах. В кратком виде эти данные представлены в табл. 1, характеризующей средние и крайние значения параметров за период наблюдений.

Эти данные сопоставлялись с ПДК, установленными для рыбоводных водоемов [6, 7],

**Таблица 1** Основные гидрохимические показатели качества вод прудов разного использования

рассматривалось их изменение по сезонам в течение года и за весь период наблюдений. Таким образом, в результате выполненного исследования удалось получить представление об особенностях химизма вод искусственных водоемов лесостепной и степной зон, используемых для различных целей, что дает основание оценить их вклад в формирование качества поверхностных вод этой части бассейна р. Дон.

#### Результаты и их обсуждение

нализ полученных данных (*табл. 1*) показал, что вода в прудах пресная, по содержанию макроэлементов относится к классу гидрокарбонатно-сульфатно-натриевых, т.к. по всей области распространены

| Показатели                                                                     | Типы прудов                |      |       |                              |      |       |                          |      |       |         |
|--------------------------------------------------------------------------------|----------------------------|------|-------|------------------------------|------|-------|--------------------------|------|-------|---------|
|                                                                                | комплексного<br>назначения |      |       | любительского<br>рыболовства |      |       | товарного<br>рыбоводства |      |       | ПДК     |
|                                                                                | cp.                        | мин. | макс. | cp.                          | мин. | макс. | cp.                      | мин. | макс. |         |
| Водородный показатель (pH)                                                     | 7,9                        | 6,5  | 9,1   | 7,0                          | 6,0  | 7,7   | 7,3                      | 6,4  | 8     | 6,5-8,5 |
| Электропроводность $(x)$ , мс/м                                                | 97,5                       | 73,9 | 113,9 | 58,9                         | 42   | 139   | 113,7                    | 40   | 192   | -       |
| Цветность, градусы                                                             | 90,5                       | 27   | 350   | 16,5                         | 10   | 65    | 54                       | 15   | 175   | 20      |
| HCO <sub>3</sub> ⁻, мг/дм <sup>3</sup>                                         | 364                        | 281  | 537   | 297,6                        | 189  | 378   | 377,8                    | 281  | 744   | _       |
| $SO_4^{2-}$ , мг/дм $^3$                                                       | 219                        | 43   | 354   | 49,7                         | 13,5 | 360   | 242                      | 42   | 476   | 100     |
| Cl-, мг/дм <sup>3</sup>                                                        | 16,3                       | 2    | 25    | 10,3                         | 4,1  | 43    | 53,5                     | 3,1  | 133   | 300     |
| Ca <sup>2+</sup> , мг/дм <sup>3</sup>                                          | 54,5                       | 24   | 102   | 65,3                         | 44   | 85    | 78,7                     | 14   | 175   | 180     |
| ${ m Mg^{2+}}$ , мг/дм $^{3}$                                                  | 47,7                       | 41   | 61    | 20,2                         | 15,6 | 34    | 42,1                     | 14   | 82    | 40      |
| $\mathrm{Na^+}$ , мг/дм $^3$                                                   | 118,5                      | 11   | 406   | 26,82                        | 15   | 116   | 109,4                    | 17   | 140   | 120     |
| K+, мг/дм <sup>3</sup>                                                         | 20,3                       | 1,6  | 119   | 5,2                          | 0,2  | 28    | 15,02                    | 2,9  | 39    | 50      |
| Перманганатная окисляе-<br>мость, мгО/дм <sup>3</sup>                          | 13,1                       | 6,6  | 21,1  | 5,3                          | 1,5  | 18,8  | 16,1                     | 4,8  | 54,7  | 5,0     |
| Бихроматная окисляе-<br>мость (ХПК), мгО/дм <sup>3</sup>                       | 51,7                       | 14,6 | 120   | 24                           | 10   | 67,6  | 58,0                     | 11,2 | 147,8 | 15,0    |
| Нитритный азот $^*$ (NO $_2^-$ ), N мг/дм $^3$                                 | 0,0                        | 0,0  | 0,0   | 0,0                          | 0,0  | 0,1   | 0,0                      | 0,0  | 0,1   | 0,02    |
| Аммонийный азот ( $\mathrm{NH_4}^+$ ), $\mathrm{N}\ \mathrm{Mr}/\mathrm{дm}^3$ | 0,5                        | 0,1  | 1,1   | 0,4                          | 0,0  | 0,4   | 2,3                      | 0,1  | 5,2   | 0,5     |
| Нитратный азот<br>(NO <sub>3</sub> <sup>-</sup> ), N мг/дм <sup>3</sup>        | 0,43                       | 0,08 | 1,73  | 0,59                         | 0,05 | 1,55  | 0,39                     | 0,06 | 1,62  | 9,1     |
| Органический азот<br>(N орг.), N мг/дм <sup>3</sup>                            | 3,5                        | 1,1  | 7,8   | 1,5                          | 0,1  | 3,2   | 3,7                      | 0,7  | 21,5  | _       |
| Общий азот, N мг/дм <sup>3</sup>                                               | 4,5                        | 1,5  | 8,9   | 2,5                          | 1,1  | 7,4   | 6,3                      | 1,9  | 25,8  | _       |
| Общий фосфор, Рмг/дм <sup>3</sup>                                              | 0,11                       | 0,03 | 0,31  | 0,096                        | 0,04 | 0,54  | 0,55                     | 0,08 | 1,59  | _       |
| Минеральный фосфор $(PO_4^{3^-}), Pмг/дм^3$                                    | 0,06                       | 0,01 | 0,17  | 0,07                         | 0,02 | 0,41  | 0,40                     | 0,06 | 0,81  | 0,05    |