ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ПРАКТИКУМ ПО ОПТИКЕ И АТОМНОЙ ФИЗИКЕ

Учебно-методическое пособие для вузов

Издательско-полиграфический центр Воронежского государственного университета 2009

СОДЕРЖАНИЕ

1. Определение постоянной в законе Стефана – Больцмана	
при помощи оптического пирометра	4
2. Изучение внешнего фотоэффекта	11
3. Изучение явления вращения плоскости колебаний	
плоскополяризованного света	17
4. Определение показателей преломления жидкостей с помощью	
рефрактометра	23
5. Определение длины световой волны с помощью	
колец Ньютона	29
6. Определение длины световой волны при помощи	
дифракционной решетки	37
7. Изучение работы монохроматора и его градуировка	43
8. Изучение спектра испускания атома водорода и определение	
некоторых внутриатомных констант	48
9. Приложение. Изучение нониусов	

нечный интервал всевозможных длин волн и изображается для температуры T_1 на рис. 1 всей заштрихованной площадью под кривой $u_{\lambda T}$. С ростом температуры увеличивается интенсивность теплового движения частиц тела и возрастает энергия, излучаемая телом как на данной длине волны λ , так и во всем интервале длин волн. Поэтому при $T_3 > T_2 > T_1$ поднимается вся спектральная кривая $u_{\lambda T}$ теплового излучения, как показано на рис. 1.

Однако объяснить рассмотренную зависимость спектральной плотности излучения от длины волны долгое время не удавалось. Полученные в рамках классической физики закон Вина хорошо совпадал с экспериментом в коротковолновой области, а закон Релея — Джинса, наоборот, давал хорошее совпадение в длинноволновой части спектра.

Формула для спектральной плотности равновесного излучения, хорошо согласующаяся с опытом при всех длинах волн, была получена Планком в 1900 г. Оказалось, что для теоретического вывода этой формулы необходима гипотеза, коренным образом противоречащая представлениям классической физики. Планк предположил, что энергия колебаний атомов или молекул может принимать не любые, а только вполне определенные дискретные значения (E=hv), отделенные друг от друга конечными интервалами. Это означает, что энергия не непрерывна, а квантуется, т. е. существует лишь в строго определенных дискретных порциях. Наименьшая порция энергии E=hv называется квантом энергии.

Формула Планка может быть записана или через частоту v или через длину волны λ ($v = c/\lambda$):

$$u_{vT} = \frac{2\pi v^2}{c^2} \cdot \frac{hv}{e^{\frac{hv}{kT}} - 1},\tag{5}$$

$$u_{\lambda T} = \frac{2\pi h c^2}{\lambda^5} \cdot \frac{1}{e^{\frac{hc}{\lambda kT}} - 1}.$$
 (6)

Все известные ранее законы теплового излучения могут быть получены из формулы Планка.

Закон Стефана – Больцмана определяет полную энергию излучения. Для получения полной энергии надо проинтегрировать выражение (6) по всем длинам волн:

$$R = \int_{0}^{\infty} u_{\lambda T} d\lambda = \frac{2\pi^{5} k^{4}}{15c^{2}h^{3}} \cdot T^{4}, \quad \text{или} \quad R = \sigma T^{4}.$$
 (7)

Полная энергия, излучаемая абсолютно черным телом за одну секунду, пропорциональна четвертой степени температуры.

Константа σ в формуле (7) называется постоянной Стефана – Больцмана и измеряется в Дж/(м²·с·К⁴) или в $B\tau/(m²·K⁴)$.

Очевидно, что суммарная энергия излучения по всем длинам волн, испускаемая площадкой S абсолютно черного тела, равна:

$$R = \sigma T^4 S$$
.

Из формулы Планка можно сделать вывод о распределении энергии излучения абсолютно черного тела по длинам волн.

Максимум спектральной плотности излучения можно определить, если продифференцировать выражение (6) и приравнять к нулю:

$$\frac{dr_{\lambda T}}{d\lambda} = 0,$$

что приводит к двум законам Вина:

$$\lambda_{\text{max}} = \frac{b}{T},\tag{8}$$

$$u_{\lambda T} = c_1 T^5, \tag{9}$$

где b и c_1 – численные постоянные.

Иными словами, длина волны, на которую приходится максимум интенсивности излучения, обратно пропорциональна температуре (8) и, следовательно, максимум излучения с увеличением температуры смещается в сторону коротких длин волн (1-й закон Вина).

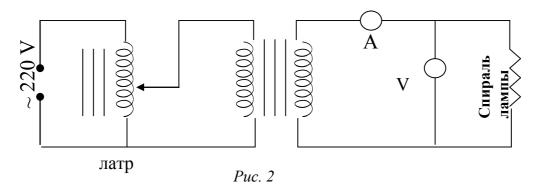
Максимальная интенсивность излучения (9) пропорциональна пятой степени температуры (2-й закон Вина).

Графически законы Стефана – Больцмана и Вина представлены на рис. 1, из которого следует, что количество излучаемой телом энергии зависит от температуры.

Если известна длина волны λ_{max} , соответствующая максимуму интенсивности излучения тела, то, используя 1-й закон Вина, можно определить температуру тела. Определенная таким образом температура называется его цветовой температурой.

Используя закон Стефана – Больцмана, можно определить энергетическую или радиационную температуру тела. Измерение этой температуры основано на излучении интегральной интенсивности излучения, т. е. полной энергий излучения R.

Из закона Стефана – Больцмана следует, что количество тепловой энергии, передаваемое единицей поверхности абсолютно черного тела, находящегося при температуре T_1 , в окружающую среду, имеющую температуру T_2 (если среду можно рассматривать как абсолютно черное тело), равно:


$$R = R(T_1) - R(T_2) = \sigma(T_1^4 - T_2^4). \tag{10}$$

Излучение всех остальных тел подчиняется такой же закономерности.

Метод определения температуры раскаленных тел по спектру излучения на основе использования законов теплового излучения называется оптической пирометрией. Соответствующие приборы называются оптическими пирометрами.

Описание установки и оптического пирометра

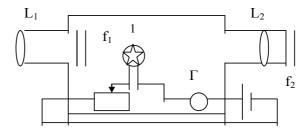
Целью данной работы является определение постоянной σ в законе Стефана – Больцмана. Исследуемым телом, которое считается абсолютно черным, является вольфрамовая спираль лампы, нагреваемая электрическим током. Электрическая схема установки показана на рис. 2.

Напряжение от сети через латр (лабораторный автотрансформатор) и понижающий трансформатор подается на спираль лампы. С помощью латра можно менять ток и напряжение на спирали лампы, которые измеряются включенными в цепь амперметром и вольтметром.

Мощность, затрачиваемая на поддержание единицы площади спирали в накаленном состоянии, будет равна:

$$W = \frac{IU}{2S},\tag{11}$$

где I — сила тока в цепи лампы, U — падение напряжения на спирали лампы, S — площадь спирали (2S, т. к. спираль излучает в обе стороны).


$$I \cdot U = 2\sigma S(T_1^4 - T_2^4).$$

Приравнивая эту мощность количеству энергии, теряемой спиралью за 1 секунду, в соответствии с законом Стефана – Больцмана (9) получим формулу (12):

$$\sigma = \frac{I \cdot U}{2S(T_1^4 - T_2^4)},$$
 (12)

в которой T_1 – температура спирали, T_2 – температура окружающей среды.

Для измерения температуры спирали лампы служит оптический пирометр с «исчезающей нитью», измеряющий яркостную температуру тела. Определение температуры сводится к сравнению яркости излучения исследуемого тела (в нашем случае спираль лампы – 1,

Puc. 3