Ä

А.Н. ЯКОВЛЕВ

ОСНОВЫ ТЕОРИИ СИГНАЛОВ В ПРИМЕРАХ, УПРАЖНЕНИЯХ И ЗАДАНИЯХ

Рекомендовано Сибирским региональным отделением Учебно-методического объединения высших учебных заведений РФ по образованию в области радиотехники, электроники, биомедицинской техники и автоматизации для межвузовского использования в качестве учебного пособия для студентов радиотехнических направлений и специальностей

НОВОСИБИРСК 2012 УДК 621.372(075.8) Я 474

Рецензенты:

д-р техн. наук, проф. *С.П. Новицкий* (НГТУ); д-р техн. наук, проф. *В.П. Разинкин* (НГТУ); д-р техн. наук, проф. *А.К. Дмитриев* (НГТУ); канд. техн. наук, д-р электротехники *С.Ю. Матвеев* (директор ООО «НПО-Триада-ТВ»);

канд. техн. наук, проф. *Б.И. Филиппов* (зав. каф. радиотехнических систем Сибирского гос. ун-та телекоммуникаций и информатики – СибГУТИ); д-р техн. наук, проф. *В.Г. Патноков* (каф. радиотехники ИИФиРЭ ФГАОУ ВПО «Сибирский федеральный университет»)

Яковлев А.Н.

Я 474 Основы теории сигналов в примерах, упражнениях и заданиях : учеб. пособие / А.Н. Яковлев. – Новосибирск : Изд-во НГТУ, 2012. – 472 с.

ISBN 978-5-7782-1995-3

Пособие содержит 16 глав по основополагающим разделам теории сигналов: сигналы и их основные характеристики, динамическое, корреляционное и геометрическое представления сигналов, представление сигналов ортогональными функциями (Радемахера, Уолша, рядами Фурье и Котельникова и др.), спектральное представление периодических и непериодических сигналов (преобразования Фурье и Лапласа), вейвлет-преобразования сигналы, модулированные сигналы и случайные процессы, дискретные сигналы, дискретное и быстрое преобразования Фурье и вейвлет-преобразования последовательностей, кепстральный анализ и др.

В каждой из 16 глав даны краткие теоретические сведения (определения, расчетные формулы и т.п.) в объеме, необходимом для решения приводимых примеров и упражнений. Затем предложены примеры и упражнения (с ответами) для закрепления теоретического материала и выработки навыков творческого мышления, переноса знаний на решение более сложных ситуаций. Книга содержит 132 примера и 252 упражнения (с ответами). Далее почти по каждой теме следует задание, которое может быть составной частью расчетно-графической и/или курсовой работы и содержит от 1 до 3 задач, составленных в 10 вариантах и 10 подвариантах. В качестве средства создания иллюстрационных примеров использованы широко распространенные системы компьютерной математики: Mathcad и MATLAB.

В приложении представлен обширный справочный материал.

Предлагаемое пособие, в котором обобщен многолетний опыт автора, предназначено для практических и самостоятельных занятий, для расчетно-графических заданий, для контроля знаний и умений, а также для занятий в рамках модульно-рейтинговой системы образования и может быть полезно студентам и преподавателям радиотехнических специальностей и лицам, занимающимся самообразованием (или в системе дистанционного обучения).

УДК 621.372(075.8)

ISBN 978-5-7782-1995-3

© Яковлев А.Н., 2012

© Новосибирский государственный технический университет, 2012

ОГЛАВЛЕНИЕ

Список сокращений	15
Предисловие	17
ВВЕДЕНИЕ	19
В.1. Общие сведения	19
В.2. Классификация сигналов	21
В.3. Структурная схема ЦОС	27
Глава 1. СИГНАЛЫ И ИХ ОСНОВНЫЕ ХАРАКТЕРИСТИКИ	29
1.1. Краткие теоретические сведения	29
1.1.1. Модель сигнала	29
1.1.2. Некоторые физические характеристики	30
1.1.3. Энергетические характеристики сигнала	33
1.2. Примеры	
1. Гармоническое колебание	35
2. Единичная функция	
3. Дельта-функция	38
4. Прямоугольный импульс	40
5. Сигнум-функция	
6. Энергия и мощность гармонического колебания за период	
7. Энергия бигармонического сигнала	42
8. Телевизионный сигнал изображения	42
1.3. Упражнения	
1.3.1. Модели сигналов	
1.3.2. Характеристики сигналов	45
1.4. Задание. Модель и основные характеристики сигнала	
Глава 2. ДИНАМИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛОВ	
2.1. Краткие теоретические сведения	
2.1.1. Представление с помощью функций включения	
2.1.2. Представление с помощью дельта-функций	
2.2. Примеры	
1. Линейно нарастающее напряжение	
2. Прямоугольный импульс	
3. Производная прямоугольного импульса	53
4. Сигнал линейного перехода из состояния 0 в состояние U_0	53
5. Нарастающая экспонента	54
 Фильтрующее лействие лельта-функции на экспоненциальный сигнал 	54

2.3. Упражнения	55
2.4. Задание. Динамическое представление импульсного сигнала	56
Глава 3. КОРРЕЛЯЦИОННОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛОВ	57
3.1. Краткие теоретические сведения	
3.1.1. АКФ непериодического сигнала и ее свойства	57
3.1.2. АКФ периодического сигнала и ее свойства	60
3.1.3. ВКФ непериодического сигнала и ее свойства	61
3.1.4. ВКФ периодического сигнала и ее свойства	62
3.2. Примеры	62
1. АКФ прямоугольного импульса	62
2. АКФ пары импульсов	
3. АКФ гармонического колебания	65
4. АКФ периодической последовательности прямоугольных импульсов	66
5. ВКФ двух прямоугольных импульсов	66
6. ВКФ прямоугольного и несимметричного треугольного импульсов	67
7. ВКФ двух несимметричных треугольных импульсов	69
8. ВКФ двух гармонических колебаний	
3.3. Упражнения	70
3.4. Задание. Корреляционное представление сигналов	72
Глава 4. ГЕОМЕТРИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ СИГНАЛОВ	73
4.1. Краткие теоретические сведения	73
4.1.1. Пространство сигналов	73
4.1.2. Линейное пространство	75
4.1.3. Нормированное пространство	75
4.1.4. Метрическое пространство	76
4.1.5. Пространство со скалярным произведением	77
4.2. Примеры	79
1. Множество сигналов с ограничением их амплитуды	79
2. Энергия и норма косинусоидального импульса	
3. Метрика двух сигналов	80
4. Минимальное расстояние между сигналами	81
5. Скалярное произведение двух импульсов	81
4.3. Упражнения	82
<i>Глава 5</i> . ПРЕДСТАВЛЕНИЕ СИГНАЛОВ ОРТОГОНАЛЬНЫМИ ФУНКЦИЯМИ	85
5.1. Краткие теоретические сведения	
5.1.1. Обобщенный ряд Фурье	85
5.1.2. Спектральный анализ	86

5.1.2 Crumos augus ran	97
5.1.3. Синтез сигналов	
5.1.4. Выбор рациональной системы функций	
5.1.6. Оучили Уолша и Радемахера	
5.1.6. Ортогональные системы специальных функций	
5.2. Примеры	
5.2.1. Ортогональные функции	
1. Гармонические базисные функции	
2. Комплексные экспоненциальные функции	
3. Формирование ФУ с помощью матриц Адамара	
4. Перемножение ФУ	
5. Формирование ФУ с помощью функций Радемахера	
5.2.2. Анализ и синтез сигналов в базисе функций Радемахера и Уолша	
6. Аппроксимация сигнала функциями Радемахера	
7. Спектр гармонического сигнала в базисе ФУ	
8. Синтез гармонического сигнала в базисе ФУ	
5.2.3. Синтез (аппроксимация) сигнала в базисе функций Лагерра	
9. Аппроксимация импульсного сигнала	
5.3. Упражнения	
5.3.1. Представление сигналов в базисе функций Радемахера	
5.3.2. Функции Уолша	
5.3.3. Представление сигналов в базисе функций Уолша	
5.3.4. Представление сигналов в базисе функций Лежандра и Лагерра	
5.4. Задание. Представление сигнала в базисе функций Уолша	109
Глава 6. ГАРМОНИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ ПЕРИОДИЧЕСКИХ СИГНАЛОВ. РЯД ФУРЬЕ	111
6.1. Краткие теоретические сведения	
6.1.1. Гармонические базисные функции	
6.1.2. Формы ряда Фурье	
6.1.3. Распределение мощности в спектре сигнала	
6.1.4. Задачи анализа и синтеза	
6.2. Примеры	
1. Гармоническое колебание	
2. Периодическая последовательность прямоугольных импульсов	
3. Меандр и его спектр	
4. Спектр периодической последовательности прямоугольных импульсо	
представленной рядом Фурье в комплексной формеформе	
5. Синтез периодической последовательности прямоугольных импульсов	
6. Пилообразный сигнал	127

Ä

7. Последовательность треугольных импульсов	129
6.3. Упражнения	130
Глава 7. СПЕКТРАЛЬНОЕ ПРЕДСТАВЛЕНИЕ НЕПЕРИОДИЧЕСКИХ	
СИГНАЛОВ. ПРЕОБРАЗОВАНИЯ ФУРЬЕ И ЛАПЛАСА	
7.1. Краткие теоретические сведения	
7.1.1. Преобразования Фурье	
7.1.2. Энергетический спектр сигнала и его связь с АКФ	137
7.1.3. Определение активной длительности сигнала и ширины его спектра	139
7.1.4. Преобразования Лапласа	141
7.2. Примеры	142
7.2.1. Спектральная плотность интегрируемых сигналов	142
1. Прямоугольный импульс	142
2. Экспоненциальный импульс	144
3. Колокольный (гауссовский) импульс	145
4. Импульс вида $\sin(x)/x$	146
5. Спектр пары импульсов прямоугольной формы	148
6. «Пачка» импульсов	150
7. Симметричный треугольный импульс	151
8. Затухающее гармоническое колебание	153
9. Свертка сигналов. Связь с ВКФ	154
7.2.2. Спектральная плотность неинтегрируемых сигналов	157
10. Функция включения (Хевисайда)	157
11. Дельта-фукция (Дирака)	159
12. Гармоническое колебание	159
13. Постоянное напряжение	160
14. Комплексная экспонента	160
15. Периодический сигнал	161
7.2.3. Преобразования Лапласа	161
16. Изображение функций Хевисайда и Дирака	161
17. Изображение прямоугольного импульса	162
18. Определение оригинала по изображению	162
7.3. Упражнения	163
7.3.1. Спектральный анализ и синтез сигналов	163
7.3.2. Спектр, АКФ и свертка сигналов	167
7.3.3. Преобразования Лапласа	168
7.4. Задание. Спектральный анализ сигналов	169

9.3. Задания	221
9.3.1. Вейвлет-анализ в пакете Mathcad на основе МНАТ-вейвлета	221
9.3.2. Вейвлет-представление в пакете MATLAB	222
Глава 10. МОДУЛИРОВАННЫЕ СИГНАЛЫ	225
10.1. Краткие теоретические сведения	225
10.1.1. Общие сведения	225
10.1.2. Амплитудно-модулированное колебание (АМК)	227
10.1.3. Сигналы угловой модуляции	231
10.1.4. Узкополосные, комплексные и аналитические сигналы	237
10.2. Примеры	
10.2.1. Амплитудно-модулированный сигнал (АМС)	241
1. Спектр многокомпонентного АМС	241
2. Спектр АМС непериодического (импульсного) сигнала	242
3. Автокорреляционная функция АМК	243
4. АКФ импульсного АМС	245
10.2.2. Сигнал угловой модуляции (УМС)	246
5. Радиоимпульс с линейной частотной модуляцией	246
6. АКФ ЛЧМ-импульса	247
7. Преобразования Гильберта для гармонических колебаний	248
10.3. Упражнения	249
10.3.1. Амплитудно-модулированные сигналы	249
10.3.2. Сигналы с угловой модуляцией	
10.3.3. ЛЧМ-импульсы	254
10.3.4. Комплексные и аналитические сигналы	255
10.4. Задания	256
10.4.1. Амплитудно-модулированное колебание	256
10.4.2. Последовательность прямоугольных радиоимпульсов	258
10.4.3. Частотно-модулированное колебание	
<i>Глава 11.</i> ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ПРОЦЕССОВ	
11.1. Краткие теоретические сведения	
11.1.1. Вероятностное описание СП	261
11.1.2. Моментные функции. Стационарные и эргодические процессы	266
11.1.3. Корреляционно-спектральное представление СП	269
11.2. Примеры	274
11.2.1. Параметры и характеристики СП в сечении	274
1. Определение вероятности событий	274
2. Математическое ожидание и дисперсия экспоненциального распределе-	27
ния	2.74

3. Характеристическая функция и энтрония равномерного закона	275
4. Определение моментов СП по кумулянтным функциям	276
5. ПРВ функции случайной величины	277
6. Функциональное преобразование СП	278
11.2.2. Различные СП	279
7. Гармоническое колебание со случайной начальной фазой	279
8. Производная от эргодического СП.	281
9. Узкополосный СП	282
10. Распределение огибающей и фазы суммы гармонического сигнала	204
и узкополосного нормального шума	
11.3.1. Вероятностные характеристики в сечении	
11.3.2. Характеристические функции. Энтропия	
11.3.2. Жарактеристические функции. Энтропия	
11.3.4. Спектральный и корреляционный анализ	
11.3.5. Узкополосные случайные процессы	
11.4. Задания	
11.4.1. Вероятность превышения заданного уровня	
11.4.2. Закон распределения	
11.4.3. Моментные функции. Стационарность и эргодичность	
Глава 12. СЛУЧАЙНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ И ИХ ОСНОВНЫЕ	
ХАРАКТЕРИСТИКИ	301
12.1. Краткие теоретические сведения	301
12.1.1. Общие сведения	301
12.1.2. Оценка числовых характеристик	302
12.1.3. Оценка плотности вероятности	304
12.1.4. Оценка АКФ	305
12.1.5. Оценка СПМ	306
12.1.6. Вычисления в пакете Mathcad	307
12.2. Примеры	307
1. Числовые характеристики последовательности	307
2. То же, но с использованием встроенных функций Mathcad	309
3. Расчет и построение гистограммы	309
4. Вычисление АКФ	312
5. Вычисление СПМ	
6. АКФ и СПМ коррелированной последовательности	313
7. Корреляционная функция и СПМ двух коррелированных последовательностей	316

12.3. Задание. Определение основных характеристик случайной последовательности	317
Глава 13. ДИСКРЕТНЫЕ СИГНАЛЫ	
13.1. Краткие теоретические сведения	
13.1.1. Способы представления дискретных сигналов	
13.1.2. Преобразования Фурье и Лапласа	
13.1.3. Z-преобразование	
13.2. Примеры	329
1. Единичный дискретный скачок	329
2. Экспоненциальная дискретная последовательность	331
3. Косинусоидальная последовательность	332
4. Свертка последовательностей	332
5. Вычисление <i>OZ</i> П с использованием теоремы Коши	333
6. Определение <i>OZ</i> П разложением <i>Z</i> -образа в степенной ряд	334
7. Вычисление x[n] с помощью вычетов	334
8. Вычисление $OZ\Pi$ разложением функции $X(z)$ на простые дроби	335
9. Нахождение последовательности делением числителя ее Z-образа	
на знаменатель	
13.3.1. Дискретная последовательность. Преобразования Фурье и Лапласа	
13.3.2. Прямое Z-преобразование	
13.3.3. Обратное <i>Z</i> -преобразование	
Глава 14. ДИСКРЕТНОЕ И БЫСТРОЕ ПРЕОБРАЗОВАНИЕ ФУРЬЕ	
14.1. Краткие теоретические сведения	
14.1.1. Дискретное преобразование Фурье	
14.1.2. Восстановление аналогового сигнала по ДПФ	
14.1.3. Быстрое преобразование Фурье	
14.1.4. Вычисление БПФ в пакете Mathcad	
14.1.5. MATLAB для вычислений БПФ	
14.2. Примеры	
14.2.1. Вычисление ДПФ	
1. Экспоненциальная дискретная последовательность	
2. Вычисление коэффициентов ДПФ	
3. Выполнение обратного ДПФ	
14.2.2. Вычисление БПФ в пакете Mathcad	
4. Прямое и обратное БПФ для векторов	353
5. Синусоила как вектор	354

14

16.3. Упражнения	395
16.3.1. Комплексный кепстр	395
16.3.2. Кепстр мощности. Кепстральный анализ	
ОТВЕТЫ	397
ПРИЛОЖЕНИЯ	434
П.1. Некоторые тригонометрические формулы	434
П.2. Производные элементарных функций	435
П.3. Некоторые интегралы	436
П.4. Некоторые специальные полиномы и функции, используемые для представления сигналов обобщенным рядом Фурье	440
П.5. Основные теоремы о спектрах	
П.6. Об активной длительности и ширине спектра импульсного сигнала	
П.7. Связь между изображением по Лапласу и оригиналом	
П.8. Изображение и спектральная плотность некоторых сигналов	448
П.9. Функции Бесселя	453
П.10. Законы распределения	455
П.11. Функции формирования и обработки случайных последовательностей в пакете Mathcad [7, 30, 31]	464
П.12. Команды и функции пакета WAVELET TOOLBOX MATLAB	
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	469