УДК 629.05:631.372 ББК 40.721 К 178

Рецензенты: д-р техн. наук, проф. В. Н. Делягин д-р техн. наук, проф. Ю. Н. Блынский

Калюжный А.Т.

К 178 Электронавигация сельскохозяйственная индукционная. Теория: монография / А.Т. Калюжный; Новосиб. гос. аграр. ун-т. — Новосибирск: ИЦ НГАУ «Золотой колос», 2015. — 176 с.: ил.

ISBN 978-5-94477-178-0

В монографии изложена теория построения индукционных устройств местоопределения сельскохозяйственных машинно-тракторных агрегатов и другой самоходной техники (МТА) при автономном и групповом автоматическом вождении. Выполнен анализ навигационных квазистационарных и квазиволновых магнитных полей, создаваемых стационарными и мобильными источниками. Приведены алгоритмы формирования сигналов траекторного рассогласования в переменных магнитных полях и математические описания основных технических параметров индукционных устройств местоопределения для систем автоматического вождения МТА. Определены основные факторы, снижающие точность местоопределения МТА.

Предназначена для специалистов в области автоматизации мобильных процессов растениеводства, а также для подготовки и переподготовки специалистов приборостроительного, машиностроительного, аграрного и других профилей. Материал книги может быть полезен при автоматизации вождения других типов наземных самоходных машин – в складских помещениях, на опасных ледовых переправах, в горно-рудной промышленности, при транспортировке опасных грузов и пр. Квазиволновое магнитное поле может представлять интерес для специалистов в области поиска полезных ископаемых индуктивными методами гармонического поля.

> УДК 629.05:631.372 ББК 40.721

Утверждена и рекомендована к изданию ученым советом Инженерного института Новосибирского ГАУ (протокол № 2 от 17 октября 2015 г.).

ISBN 978-5-94477-178-0

- © Новосибирский государственный аграрный университет, 2016
- © Калюжный А. Т., 2016

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1. МАГНИТНЫЕ ПОЛЯ СТАЦИОНАРНЫХ ИСТОЧНИКОВ	9
1.1. Магнитное поле бесконечного прямолинейного проводни-ка с током	
1.2. Магнитное поле проводника конечной длины	
1.3. Равносигнальные линии проекций вектора напряженности	
вне плоскости ОХҮ системы координат	
1.4. Градиент модуля вектора напряженности и его проекций	
1.5. Магнитное поле тока заземлителей	
1.5.1. Обратный ток в земле	. 22
1.5.2. Магнитное поле обратного тока	
1.6. Суммарное магнитное поле прямого и обратного токов	
1.7. Магнитное поле Г-образного проводника	. 30
1.8. Магнитное поле двух проводов с синфазными токами	
1.9. Суммарное поле противофазных токов	. 36
1.10. Магнитное поле прямоугольной петли	
1.11. Суммарное магнитное поле двух петель	. 40
1.12. Поле петли непрямоугольной формы	. 45
1.13. Влияние земли на навигационные магнитные поля	. 46
1.13.1. Электрические свойства земли	. 46
1.13.2. Магнитное поле токов индукции	. 47
1.13.3. Магнитные числа нормального магнитного поля	
2. МАГНИТНЫЕ ПОЛЯ МОБИЛЬНЫХ ИСТОЧНИКОВ	. 53
2.1. Поле круговой рамки в сферической системе координат	. 53
2.2. Магнитное поле рамки в прямоугольной системе координат	56
2.3. Равносигнальные линии проекций вектора напряженности	
2.4. Форма магнитных силовых линий тока рамки	. 61
2.5. Суммарное поле двух горизонтальных рамок	. 63
2.6. Поле противофазных рамок	. 65
2.7. Магнитное поле квадратной рамки	
3. КВАЗИВОЛНОВОЕ МАГНИТНОЕ ПОЛЕ	. 68
3.1. Создание квазиволнового магнитного поля	. 68
3.2. Квазиволновое поле в плоскости проводов конечной длины	
3.3. Поле над плоскостью бесконечных проводов	
3.4. Изофазы в вертикальной плоскости YOZ	
3.5. Квазиволновое поле при фазовом слвиге 120°	

3.6. Расчет квазиволнового поля по таблице нормированных	
данных	. 82
3.7. Квазиволновое поле изолированных петель	. 83
3.8. Квазиволновое поле рамок	. 84
3.9. Влияние электропроводимости земли	. 84
4. МЕТОДЫ НАВИГАЦИИ МТА В МАГНИТНЫХ ПОЛЯХ	
СТАЦИОНАРНЫХ ИСТОЧНИКОВ	. 87
4.1. Разностно-амплитудные методы местоопределения МТА	. 87
4.1.1. Местоопределение по модулю вектора напряженности.	
4.1.2. Разностно-амплитудный метод местоопределения	
по квадрату модуля вектора напряженности	. 98
4.1.3. Местоопределение МТА по проекции вектора нап-	
ряженности	. 98
4.2. Амплитудно-фазный метод местоопределения	112
4.3. Дальномерные методы местоопределения МТА	116
4.3.1. Амплитудно-компенсационные методы	116
4.3.2. Импульсно-фазовый метод местоопределения	
в квазиволновом магнитном поле	
4.4. Определение места МТА на дистанции	
4.5. Определение пространственной ориентации осей трактора	128
5. ИНДУКЦИОННЫЕ МЕТОДЫ НАВИГАЦИИ МТА В МАГ-	
НИТНЫХ ПОЛЯХ МОБИЛЬНЫХ ИСТОЧНИКОВ	129
5.1. Местоопределение при горизонтальном положении рамки	
5.1.1. Определение интервала при движении агрегатов	150
шеренгой	131
5.1.2. Определение интервала при движении МТА колонной	
5.1.3. Измерение дистанции между лидером и дублером	
5.2. Местоопределение МТА в меридиональной плоскости рамки	
5.2.1. Определение интервала при движении МТА шерен-	
гой	144
5.2.2. Методы определения интервала при движении МТА	
колонной	149
5.2.3. Измерение дистанции в меридиональной плоскости	
ЗАКЛЮЧЕНИЕ	
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	
УСЛОВНЫЕ ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ	
HDIAHOMEHIAE	1 (0