Министерство образования и науки Российской Федерации Ярославский государственный университет им. П. Г. Демидова

М. В. Ануфриенко, В. А. Бондаренко, А. В. Зафиевский, Г. В. Шабаршина

Математический анализ

Учебное пособие

Рекомендовано
Научно-методическим советом университета
для студентов, обучающихся по специальности
Прикладная математика и информатика

Ярославль 2010

Ä

УДК 51:37 ББК Ч481. 28я73 М 34

Рекомендовано

Редакционно-издательским советом университета в качестве учебного издания. План 2009/10 учебного года

Рецензенты:

Е. И. Смирнов, доктор педагогических наук, профессор ЯГПУ, академик РАЕН; кафедра кибернетики ЯГТУ

М 34 **Математический анализ**: учебное пособие / М. В. Ануфриенко, В. А. Бондаренко, А. В. Зафиевский, Г. В. Шабаршина; Яросл. гос. ун-т им. П. Г. Демидова. – Ярославль: ЯрГУ, 2010. – 140 с. ISBN 978-5-8397-0773-3

Настоящее учебное пособие предназначено для самостоятельной работы студентов по программе курса математического анализа, который читается на факультете ИВТ. В пособии собраны материалы, которые позволят облегчить подготовку студентов младших курсов к практическим занятиям, зачетам и экзаменам по одной из наиболее сложных дисциплин математического и естественно-научного цикла.

Предназначено для студентов, обучающихся по направлению Прикладная математика и информатика (дисциплина «Математический анализ», цикл МЕН), очной формы обучения.

УДК 51:37 ББК Ч481. 28я73

ISBN 978-5-8397-0773-3

© Ярославский государственный университет им. П. Г. Демидова, 2010

Ä

Оглавление

Предисловие	5
Немного из истории	9
Глава 1	15
§ 1.1. Числовые множества. Границы числовых множеств. Метод	
математической индукции	15
§ 1.2. Числовые последовательности. Предел последовательности	20
§ 1.3. Функция. Предел функции	26
§ 1.4. Непрерывность функции	31
§ 1.5. Дифференцируемость функции	34
§ 1.6. Исследование функции	38
Приложение к главе 1	41
Глава 2	47
§ 2.1. Неопределенный интеграл.	47
§ 2.2. Определенный интеграл.	50
§ 2.3. Несобственные интегралы	53
§ 2.4. Числовые и степенные ряды.	58
§ 2.5. Функции нескольких переменных.	64
Приложение к главе 2	69
Глава 3	74
§ 3.1. Функциональные последовательности	74
§ 3.2. Равномерная сходимость функциональных последовательност	ей 77
§ 3.3. Функциональные ряды. Нахождение множества сходимости	
функционального ряда	81
§ 3.4. Равномерная сходимость функциональных рядов	83
§ 3.5. Интегрирование и дифференцирование равномерно сходящих	СЯ
функциональных рядов	86
§ 3.6. Ряды Фурье. Разложение периодических функций в ряд Фурье	88

Список литературы	136
Приложение к главе 4	132
§ 4.8. Конформные отображения	128
§ 4.7. Вычисление определенных интегралов	123
§ 4.6. Интеграл по замкнутому контуру	120
§ 4.5. Вычеты	115
§ 4.4. Ряды Тейлора	112
§ 4.3. Аналитические и гармонические функции	106
§ 4.2. Последовательности и ряды комплексных чисел	104
§ 4.1. Комплексные числа	102
Глава 4	100
Приложение к главе 3	95
по параметру	93
§ 3.9. Исследование интегралов на равномерную сходимость	
зависящего от параметра	91
§ 3.8. Нахождение множества сходимости интеграла,	
Вычисление предельной функции	90
§ 3.7. Интегралы, зависящие от параметра.	

Предисловие

В 2011 г. начинается массовый переход российского высшего образования к многоуровневой системе и новым федеральным государственным образовательным стандартам (ФГОС). Тем не менее введение двух (или трех – в будущем) уровней высшего образования не является главным элементом новой системы. Центральный ее момент – ориентация высших учебных заведений на конечный результат: знания выпускников должны быть применимы в практической деятельности, что должно в гораздо большей степени обеспечить трудоустройство выпускников.

Для того чтобы студенты, заканчивающие ту или иную специальность (или направление — в новой терминологии), были востребованы на рынке труда, работодатели должны иметь возможность получить ясное представление о содержании квалификаций, полученных студентами в процессе обучения, и об их качестве. Средством, облегчающим работодателям понимание квалификации выпускников, призваны служить компетенции, отражающие содержание обучения и зачетные единицы (кредиты), выражающие затраты времени студентов на освоение дисциплин.

Под компетенцией обычно понимается способность специалиста применять приобретенные знания, умения и навыки для получения конкретного практического результата. Типичным примером использования компетенций может служить выполнение курсовой работы, в ходе чего студенту необходимо применить самые разнообразные умения, причем не только математические. Надо отметить, что в процессе выполнения таких практических работ студент приобретает, кроме профессиональных, также и общекультурные компетенции, не связанные непосредственно с выбранной профессией. В примере с курсовой работой такой общекультурной компетенцией является, в частности, умение делать обзор литературы. Здесь хочется отметить, что общекультурные компетенции приобретаются не отдельно от профессиональной деятельности, а в ее ходе. Они играют роль «клея», объединяющего все приобретенные студентом компетенции в единую модель специалиста. Это означает, что в ходе изучения дисциплин, направленных на освоение студентом профессио-