МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Инженерно-технологическая академия

К. Е. РУМЯНЦЕВ Н. Н. SHAKIR

ПРОЕКТИРОВАНИЕ СИСТЕМЫ КВАНТОВОГО РАСПРЕДЕЛЕНИЯ КЛЮЧА С ИНТЕРФЕРОМЕТРАМИ МАХА – ЦЕНДЕРА

Учебное пособие

Ростов-на-Дону – Таганрог Издательство Южного федерального университета 2020

УДК 621.391.64 ББК 32.875я73-5

P865

Печатается по решению кафедры информационной безопасности телекоммуникационных систем Института компьютерных технологий и информационной безопасности Южного федерального университета (протокол № 10 от 15 января 2020 г.)

Репензенты:

заместитель директора по научной работе Ростовского филиала Российской таможенной академии, заслуженный деятель науки РФ, доктор технических наук, профессор \mathcal{J} . А. Безуглов

профессор кафедры «Антенны и радиопередающие устройства» Южного федерального университета, заслуженный работник высшей школы РФ, доктор технических наук, профессор В. А. Обуховец

Румянцев, К. Е.

Р865 Проектирование системы квантового распределения ключа с интерферометрами Маха — Цендера : учебное пособие / К. Е. Румянцев, Н. Н. Shakir ; Южный федеральный университет. — Ростов-на-Дону ; Таганрог : Издательство Южного федерального университета, 2020. — 108 с.

ISBN 978-5-9275-3560-6

Пособие посвящено проектированию системы квантового распределения ключа по протоколу В92 с интерферометрами Маха — Цендера. Система содержит оптический однофотонный передатчик на станции Алиса и оптический однофотонный приёмник на станции Боб. Оптические передатчик и приёмник соединены волоконно-оптической линией связи на основе одномодового оптического волокна Corning®SMF-28e®ULL. В проектируемой системе для формирования и приёма квантового импульса используется ослабленный лазерный импульс.

Учебное пособие готовит студента к разработке нормативной, технической и отчётной документации, представлять результаты профессиональной деятельности с использованием стандартов, норм и правил. Проектирование системы квантового распределения ключа по протоколу В92 с интерферометрами Маха — Цендера требует от студента анализа и учёта текущего состояния и тенденций развития технических средств защиты информации, сетей и систем передачи информации при решении задач профессиональной деятельности.

Пособие предназначено для студентов специальности 10.05.02 «Информационная безопасность телекоммуникационных систем». Пособие полезно для подготовки дипломированных специалистов по специальностям и направлению укрупнённой группы 10.00.00 «Информационная безопасность».

УДК 621.391.64 ББК 32.875я73-5

ISBN 978-5-9275-3560-6

- © Южный федеральный университет, 2020
- © Румянцев К. Е., Shakir H. H., 2020
- © Оформление. Макет. Издательство Южного федерального университета, 2020

Ä

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ	3
СПИСОК ПРИНЯТЫХ СОКРАЩЕНИЙ	4
введение	6
1. ПАРАМЕТРЫ ПРИМЕНЯЕМЫХ ОДНОМОДОВЫХ ОПТИ- ЧЕСКИХ ВОЛОКОН	12
1.1. Параметры одномодового оптического волокна на станциях 1.2. Параметры оптического волокна Corning [®] SMF-28e [®] ULL 1.3. Параметры одномодовых оптических коннекторов	12 13 15
ПРОЕКТИРОВАНИЕ ИСТОЧНИКА ОДИНОЧНЫХ ФОТОНОВ 1. Выбор передающего оптического модуля 2.2. Выбор волоконного поляризатора 2.3. Выбор регулируемого волоконно-оптического аттенюатора	17 17 25 26
3. ПРОЕКТИРОВАНИЕ ИНТЕРФЕРОМЕТРА МАХА – ЦЕНДЕРА	2.1
ПЕРЕДАЮЩЕЙ СТАНЦИИ АЛИСА	31 32 35 40
3.4. Квантовые импульсы на выходе несбалансированного интерферометра Маха – Цендера станции Алиса 3.5. Уточнение требований к оптическому однофотонному передатчику станции Алиса	46 50
4. РАСЧЁТ ЭНЕРГОВРЕМЕННЫХ ПАРАМЕТРОВ ВОЛОКОННО- ОПТИЧЕСКОЙ ЛИНИИ СВЯЗИ	53
линии связи	53 54 57
4.4. Компенсация поляризационных искажений в линии связи 5. ПРОЕКТИРОВАНИЕ ИНТЕРФЕРОМЕТРА МАХА – ЦЕНДЕРА ПРИЁМНОЙ СТАНЦИИ БОБ	60

106

Содержание

5.1. Уточнение требований к интерферометру приёмной станции	63
5.2. Выбор поляризационного светоделителя	65
5.3. Выбор волоконно-оптической линии задержки	66
5.4. Выбор второго вращателя плоскости поляризации на $\pi/2$	67
5.5. Выбор второго волоконно-оптического фазового модулятора	68
5.6. Выбор третьего контроллера поляризации	68
5.7. Выбор направленного волоконного ответвителя Х-типа	70
6. ВРЕМЕННОЕ МУЛЬТИПЛЕКСИРОВАНИЕ КВАНТОВЫХ ИМ-	
ПУЛЬСОВ	74
7. РЕГИСТРАТОР КВАНТОВЫХ ИМПУЛЬСОВ И ЭЛЕКТРОН- НЫЙ БЛОК СТРОБИРОВАНИЯ	77
	//
7.1. Требования к однофотонному приёмному оптическому модулю	77
7.2. Уточнение требований к временным параметрам функцио-	, ,
нальное модулей системы КРК	80
7.3. Формулирование требований к электронному блоку строби-	00
рования	81
	01
8. РАСЧЁТ ВЕРОЯТНОСТНЫХ ХАРАКТЕРИСТИК РЕГИСТРА-	
ЦИИ КВАНТОВЫХ СОСТОЯНИЙ ФОТОНОВ	83
ЗАКЛЮЧЕНИЕ	87
СПИСОК ЛИТЕРАТУРЫ	88
ПРИЛОЖЕНИИЕ. Статистические свойства длины волны лазера	
ID300 DFB фирмы ID QUANTIQUE	93
ТЕРМИНОЛОГИЧЕСКИЙ СЛОВАРЬ	100
ГПОССАВИЙ	102