УДК 004.056.5:519.688 ББК 32.973.2-018.2 Б12

Рецензенты: зав. кафедрой Защиты информации МФТИ, доктор техн. наук, профессор $B.\ A.\ Конявский$; научный руководитель ЮР РУНЦ ИБ Южного федерального университета, доктор техн. наук, профессор $O.\ B.\ Макаревич$

Бабенко Л. К., Ищукова Е. А., Сидоров И. Д.

В12 Параллельные алгоритмы для решения задач защиты информации. – 2-е изд., стереотип. – М.: Горячая линия—Телеком, 2014. – 304 с., ил.

ISBN 978-5-9912-0439-2.

Кратко представлены основные составляющие современных криптографических систем: симметричные алгоритмы шифрования, асимметричные алгоритмы шифрования, функции хэширования. Основной упор сделан на рассмотрение практической возможности применения существующих способов анализа современных криптосистем с целью оценки их криптографической стойкости. В работе рассмотрен целый ряд параллельных алгоритмов, основанных на различных методах анализа. В качестве примеров приведены способы реализации разработанных алгоритмов с использованием двух наиболее распространенных технологий: с использованием интерфейса передачи данных МРІ для организации распределенных многопроцессорных вычислений и технологии CUDA, основанной на использовании графических вычислений. Книга снабжена множеством наглядных примеров и иллюстраций. Впервые описаны подходы к разработке параллельных алгоритмов, ориентированных на программную реализацию, и предназначенных для решения задач в области информационной безопасности.

Для специалистов в области информационной безопасности, реализующих известные методы анализа шифрованных данных с применением параллельных вычислительных систем.

ББК 32.973.2-018.2

Адрес издательства в Интернет WWW.TECHBOOK.RU

Научное издание

Бабенко Людмила Климентьевна, **Ищукова** Евгения Александровна, **Сидоров** Игорь Дмитриевич

Параллельные алгоритмы для решения задач защиты информации

Монография

2-е издание, стереотипное

Редактор Ю. Н. Чернышов Компьютерная верстка Ю. Н. Чернышова Обложка художника О. В. Карповой

Подписано в печать 24.06.14. Формат 60×90/16. Усл. печ. л. 19. Тираж 300 экз. (1-й завод 100 экз.)

ISBN 978-5-9912-0439-2 © Л. К. Бабенко, Е. А. Ищукова, И. Д. Сидоров, 2014 © Научно-техническое издательство «Горячая линия—Телеком», 2014

Оглавление

	ъведение	J
1.	Задачи защиты информации, для решения кото-	
	рых требуются параллельные вычисления	5
	1.1. Введение в криптографию	5
	1.2. Симметричные алгоритмы шифрования	7
	1.2.1. Алгоритм шифрования DES	7
	1.2.2. Алгоритм ГОСТ 28147-89	12
	1.2.3. Стандарт AES	17
	1.3. Анализ симметричных алгоритмов шифрования	26
	1.3.1. Метод полного перебора	28
	1.3.2. Метод встречи посередине	30
	1.3.3. Линейный криптоанализ	31
	1.3.4. Дифференциальный криптоанализ	32
	1.3.5. Алгебраический анализ	38
	1.3.6. Анализ стандарта AES	40
	1.3.7. Слайдовая атака	43
	1.3.8. Парадокс дней рождений и его роль в задачах крип-	
	тоанализа	46
	1.4. Асимметричные алгоритмы шифрования	48
	1.4.1. Алгоритм RSA	49
	1.5. Методы анализа асимметричных криптосистем	50
	1.5.1. Метод базы разложения	52
	1.5.2. Логарифмирование в простом поле методом решета	۲.
	числового поля	53
	1.6. Функции хэширования	55
	1.6.1. Функция хэширования SHA	57 58
	1.6.2. Функция хэширования нового поколения Skein	50 75
	1.7. Методы анализа современных функций хэширования. 1.7.1. Методы, не зависящие от алгоритма преобразования	76
	1.7.1. Методы, не зависящие от алгоритма преобразования 1.7.2. Методы, основанные на уязвимости алгоритма пре-	70
	образования хэш-функции	77
2.		
≝•	ные технологии параллельного программирования	81
	2.1. Основные типы архитектур высокопроизводительных	01
	вычислительных систем	81
	2.1.1. Классификация Флинна	82
	2.1.1. классификация члинна	02

•

Ä

	2.1.2. Классификация многопроцессорных систем	86
	2.2. Особенности программирования параллельных вычислений	88
	2.2.1. Основные модели параллельного программирования	90
	2.2.2. Распределение данных при решении задач защиты информации	91
	2.3. Оценка эффективности разработанных параллельных	01
	программ	95
	2.3.1. Теоретические основы оценки эффективности парал-	
	лельных алгоритмов	95
	2.3.2. Закон Амдала	96
	2.4. Современные технологии параллельного программиро-	0.7
_	вания	97
3.	Введение в параллельное программирование с ис-	00
	пользованием МРІ	99
	3.1. Общие сведения об «Интерфейсе передачи данных»	99
	3.2. Обзор пакетов программ для работы с МРІ	100
	3.3. Основные функции обмена данными с помощью MPI.	102
	3.3.1. Базовые функции	103
	3.3.2. Двухточечный обмен	104
	3.3.3. Функции для глобального взаимодействия и синхро-	105
	низации	105
4.	Технология CUDA	107
	4.1. История вычислений на графических ускорителях	107
	4.2. Архитектура CUDA. Мультипроцессоры	109
	4.3. CUDA Runtime API и CUDA Driver API	110
	4.4. Вычислительная модель. Потоки, блоки, варпы	110
	4.5. Модель памяти	111
	4.6. Расширения языка	112
	4.7. Cxema программы на CUDA	113
	4.8. Пример программы на CUDA	113
	4.9. Набор инструментов разработчика — CUDA Toolkit, CUDA SDK	115
		_
	4.9.1. Отладчик Parallel Nsight 4.9.2. Ресурсы для разработчиков CUDA	117 117
_		111
ъ.	Параллельные алгоритмы в современных задачах	110
	защиты информации	118
	5.1. Задача нахождения простых чисел в заданном диапа-	110
	зоне	118
	 эадача разложения произведения на простые сомно- жители 	125

• •

Ä

5.2.1. Первый вариант решения	125
5.2.2. Второй вариант решения	132
5.3. Параллельные алгоритмы решета числового поля для	
решения задачи дискретного логарифмирования	136
5.3.1. Алгоритм параллельного просеивания	136
5.3.2. Разработка алгоритма параллельного гауссова иск-	
кинэгоп,	143
5.3.3. Гауссово исключение	144
5.3.4. Реализация метода базы разложения с помощью раз-	
работанных алгоритмов	150
щью разработанных алгоритмов5.3.6. Ускорение решения задачи дискретного логарифми-	151
рования с помощью предвычислений	152
5.4. Параллельные алгоритмы дискретного логарифмиро-	
вания в группе точек эллиптической кривой	154
5.4.1. Метод «Встреча посредине»	154
5.4.2. Метод «встреча на случайном дереве»	154
5.4.3. Анализ методов дискретного логарифмирования на	
эллиптической кривой	155
5.4.4. Распределение базы точек между процессами	156
5.4.5. Планирование взаимодействия процессов в тополо-	
гии «полносвязный граф»5.4.6. Разработка параллельного алгоритма дискретного	157
логарифмирования методом встречи посередине 5.4.7. Разработка параллельного алгоритма дискретного	159
логарифмирования методом встречи на случайном дереве	168
5.4.8. Возможность предвычислений	171
5.5. Дифференциальный криптоанализ алгоритма шифро-	
вания DES	177
5.6. Алгоритм поиска наиболее вероятных характеристик	
для проведения дифференциального криптоанализа ал-	
горитма ГОСТ 28147-89	197
5.6.1. Трудоемкость перебора	203
5.6.2. Организация межпроцессных взаимодействий	205
5.7. Пример генерации радужных таблиц на CUDA	207
5.7.1. Описание метода радужных таблиц	207
5.7.2. Вероятность успешного поиска с помощью радужной	
таблицы	209
5.7.3. Описание используемой обратной функции	210
5.7.4. Формат данных для хранения хеш-таблиц	211
5.7.5. Листинг основных модулей программы, предназна-	
ченной для запуска на архитектуре CUDA	211
Литература	222

304 Оглавление

Приложение А. Руководство по использованию МРІСН	225
Приложение Б. Основные функции, используемые в	
стандарте MPI	273
Список основных сокращений и обозначений	299

Ä

• • •