Ä

УДК [62-112+624.01]:004.9SolidWorks Simulation ББК 30.4c515 A60

Алямовский А. А.

A60 SOLIDWORKS Simulation и FloEFD. Практика, методология, идеология. – М.: ДМК Пресс, 2018. – 658 с.: ил.

ISBN 978-5-97060-646-9

Книга продолжает серию публикаций, посвящённых решению инженерных задач в среде SOLIDWORKS Simulation, включающей инструменты для анализа прочности – собственно Simulation; гидрогазодинамики и теплопередачи – Flow Simulation; кинематики и динамики механизмов – Motion. Материал основан на практическом опыте автора. Каждая глава посвящена отдельному объекту, представляющему определённый класс конструкций и обладающему методической ценностью. Изложение начинается с постановки задачи, затем следует анализ с точки зрения пригодности имеющихся инструментов. Подробно описаны построение расчётной модели в рамках реального технического задания, вычислительный процесс, получение результатов, их анализ и интерпретация.

Издание в первую очередь будет полезно инженерам, которым требуется понимание объектов через моделирование процессов, происходящих в них и вокруг них.

УДК [62-112+624.01]:004.9SolidWorks Simulation ББК 30.4c515

Все права защищены. Любая часть этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами без письменного разрешения владельцев авторских прав.

Материал, изложенный в данной книге, многократно проверен. Но поскольку вероятность технических ошибок все равно существует, издательство не может гарантировать абсолютную точность и правильность приводимых сведений. В связи с этим издательство не несет ответственности за возможные ошибки, связанные с использованием книги.

© Алямовский А. А., 2018

© Оформление, издание, ДМК Пресс, 2018

ISBN 978-5-97060-646-9

Ä

Оглавление

введение	10
Глава 1. Жёсткость, прочность и динамика оросительной системы	ol
в линейной и нелинейной балочных моделях	13
1.1. Постановка задачи	
1.2. Расчётная геометрическая балочная модель	
1.3. Статический линейный анализ	
1.4. Частотный анализ	
1.5. Устойчивость	
1.6. Статический нелинейный анализ	
1.7. Динамический нелинейный анализ	
1.8. Динамический линейный анализ	38
1.9. Выводы	43
Глава 2. Анализ применимости стеклопластика	
для изготовления секции мобильного моста	44
2.1. Постановка задачи	44
2.2. Расчётная геометрическая модель металлической конструкции	
2.3. Материалы	48
2.4. Граничные условия	49
2.5. Контакты и соединители	
2.6. Сетка	
2.7. Результаты и их интерпретация для металлической конструкции	
2.8. Металлокомпозитный вариант	
2.9. Сравнительный анализ вариантов конструкции	
2.10. Выводы	67
7 D	
Глава 3. Ветровое воздействие на тонкостенный резервуар	
3.1. Постановка задачи	68
3.2. Способы переноса аэродинамических нагрузок в прочностную	
модель	/(
3.3. Особенности построения геометрической модели	
3.4. Аэродинамический расчёт	/6
3.5. Расчёт на прочность с использованием модели листового металла	97
WE LANIA	0 /

3.6. Расчёт на прочность с ручным переносом аэродинамических	
нагрузок в прочностную модель	93
3.7. Искусственный приём автоматического переноса	
аэродинамических нагрузок в прочностную модель с оболочками	95
3.8. Оценка устойчивости в линейной постановке	
3.9. Выводы	97
Глава 4. Вибрационный анализ прибора	
с подвижными элементами	99
4.1. Постановка задачи	99
4.2. Особенности построения расчётной модели	
4.3. Эффективные модели подшипников в задачах собственных	
частот и вибрации	108
4.3.1. Оценка радиальной жёсткости	
4.3.2. Оценка осевой жёсткости	
4.3.3. Виртуальные пружины как аналоги виртуальных	
подшипников	123
4.3.4. Выводы по прогнозированию характеристик виртуальных	
подшипников и пружин	126
4.4. Замена подшипников виртуальными сущностями	
в расчётной модели прибора	127
4.5. Моделирование приводов	
4.6. Вычислительная модель	131
4.7. Настройки вычислительного процесса	133
4.8. Сетка	
4.9. Результаты по собственным частотам	
4.10. Датчики	
4.11. Результаты расчётов при вибрационном нагружении	
4.11.1.«Жёсткие» подшипники, возбуждение по z	
4.11.2. «Податливые» подшипники, возбуждение по z	
4.11.3. «Жёсткие» пружины, возбуждение по <i>z</i>	
4.11.4. «Жёсткие» подшипники, возбуждение по <i>х</i>	
4.11.5. «Жёсткие» подшипники, возбуждение по у	
4.11.6. «Податливые» подшипники, возбуждение по x	
4.11.7. «Жёсткие» пружины, возбуждение по х	
4.11.8. «Податливые» пружины, возбуждение по <i>х</i>	
4.12. Влияние демпфирующих свойств системы на динамику	
4.13. Факторы, снижающие точность расчёта	
4.14. Практическая ценность результатов	
4.14. Выводы	167

Глава 5. Рациональные алгоритмы и настройки	
для расчёта гидродинамики центробежного насоса	
с параметрическим анализом и оптимизацией	168
5.1. Постановка задачи	
5.2. Расчётная модель	
5.3. Граничные условия и настройки вычислительного процесса	
5.4. Анализ влияния настроек сетки на сходимость и точность	
5.5. Учёт сжимаемости жидкости	
5.6. Анализ кавитации	
5.7. Выводы из исследований по подготовке моделей и анализу	
настроек вычислительного процесса	195
5.8. Параметрический анализ и оптимизация	
5.9. Выводы из параметрических и оптимизационных исследований	
Глава 6. Динамика виброизолированных систем	211
6.1. Постановка задачи	211
6.2. Типовые конструкции виброизоляторов и их свойства	
6.3. Типовые испытания	218
6.4. Термины и определения	
6.5. Моделирование простой колебательной системы	
6.5.1. Постановка задачи	
6.5.2. Использование модели движения	223
6.5.3. Идентификация демпфирующих характеристик в модели	
движения	253
6.5.4. Моделирование простой колебательной системы	
в прочностной модели	255
6.5.5. Идентификация демпфирующих характеристик	
в прочностной модели	269
6.6. Вибрационный анализ в прочностной модели	
6.7. Оценка демпфирования в направлениях х и у	2/5
6.8. Типовые схемы крепления аппаратуры посредством	270
виброизоляторов	
6.9. Реализация практической модели динамических испытаний	
6.9.1. Базовая геометрическая модель	2/9
6.9.2. Реализация динамической схемы в модели движения: вибрация	207
виорация	
6.9.4. Динамика системы в модели движения: виорация	
6.9.5. Реализация динамической схемы в прочностной модели	
6.9.6. Динамика системы в прочностной модели: вибрация	
о. г.о. диналика системы в прозностной модели. впорация	

6.9.7. Динамика системы в прочностной модели: случайные	
колебания	312
6.9.8. Динамика системы в прочностной модели: удар	316
6.10. Использование функционала нелинейной динамики	
для имитации удара и вибрации	321
6.11. Библиотеки и стандартные объекты	
6.12. Перспективы	325
6.13. Выводы	
6.14. Технические аспекты	326
Глава 7. Тепловой расчёт пульта нагрузок	328
7.1. Постановка задачи	328
7.2. Адаптация геометрической модели для гидрогазодинамики	
7.3. Расчётная модель	
7.4. Иерархическое представление и присвоение граничных условий	
7.4.1. Локальная модель резистора	
7.4.2. Локальная модель арматуры резистора	
7.4.3. Локальная модель платы	
7.4.4. Локальная модель блока резисторов	
7.4.5. Глобальная модель прибора	
7.5. Особенности моделирования сетки (решётки) на входе и выходе	347
7.6. Настройки расчётной сетки	350
7.7. Настройки вычислительного процесса	
7.8. Анализ вычислительного процесса	357
7.9. Результаты и их интерпретация	
7.10. Оценка влияния постановки задачи на тепловое состояние	
конструкции	363
7.10.1. Гравитация и потенциал давления	
7.10.2. Наличие сеток на входе и выходе	365
7.10.3. Условия снаружи	
7.10.4. Влажность	371
7.11. Расчёт эффективных тепловых характеристик проволочного	
сопротивления	
7.11.1. Построение типовой ячейки	
7.11.2. Эффективная теплопроводность по оси z	
7.11.3. Эффективная теплопроводность по оси х	
7.11.4. Удельная теплоёмкость	381
7.11.5. Выводы по задаче расчёта эффективных тепловых	
характеристик	385
7.12. Анализ характеристик вентилятора для использования	
в расчётной модели	
7.13. Эффективные характеристики сетки как пористой среды	394

7.14. Выводы	399
7.15. Доработка модели по результатам анализа	
Глава 8. Тепловой расчёт редуктора с принудительным	
воздушным и водяным охлаждением	409
8.1. Постановка задачи	409
8.2. Традиционная методика полуэмпирического анализа	
8.3. Методология совместного использования численного метода	
и полуэмпирического расчёта	412
8.4. Адаптация геометрической модели для гидрогазодинамики	413
8.5. Расчётная модель	419
8.6. Результаты и их интерпретация	432
8.7. Выводы	437
Глава 9. Гидродинамический тепловой анализ	
автомобильного радиатора – многоуровневая модель	438
9.1. Постановка задачи	439
9.2. Варианты построения вычислительной модели	
9.3. Структура многоуровневой модели	
9.3.1. Радиатор	
9.3.2. Трубка для пограничного слоя	
9.3.3. Трубка для сопротивления условной среды	
9.3.4. Пористая среда для местного сопротивления в трубке	
9.3.5. Пористая среда для сопротивления блока трубок	
9.3.6. Сопротивление по воде с местными сопротивлениями трубок.	463
9.3.7. Сопротивление по воде на глобальной модели с блоком,	
имитирующим пакет трубок	
9.3.8. Ячейка для теплоотдачи от воды к воздуху	
9.3.9. Учёт изменения температуры по высоте	490
9.3.10. Поправка по мощности на излучение трубок и пластин	
в среду	495
9.3.11. Поправка по мощности на теплообмен окружения	
с бачками и рамой	
9.3.12. Полная мощность	
9.3.13. Ячейка для воздушного сопротивления	
9.3.14. Полное воздушное сопротивление	50/
9.4. Составляющие теплоотдачи и интегральные характеристики	F00
радиатора	
9.5. Выводы по расчёту исходной конструкции	
9.6. Улучшение тепловых характеристик	
7.1. Гасчет МОДИФИЦИРОВАННОЙ КОНСТРУКЦИИ	

Ä

Глава 10. Термоупругость автомобильного радиатора	519
10.1. Постановка задачи	520
10.2. Варианты построения геометрической расчётной модели	
10.3. Эффективные свойства однородной среды, имитирующей	
массив пластин	522
10.3.1. Эффективные свойства в направлении оси z	524
10.3.2. Эффективные свойства в направлении оси х	532
10.3.3. Эффективные свойства в направлении оси у	535
10.3.4. Термоупругое состояние	
10.3.5. Эффективные свойства в плоскости уг	
10.3.6. Эффективные свойства в плоскости <i>zx</i>	
10.3.7. Эффективные свойства в плоскости ху	552
10.3.8. Вычисление эффективных характеристик по результатам	
виртуальных экспериментов	
10.3.9. Выводы по расчёту эффективных характеристик	
10.4. Расчётная модель радиатора	
10.5. Настройки вычислительного процесса	
10.6. Результаты и их интерпретация	
10.7. Термоупругая модель с переменной температурой	
10.8. Выводы	5/6
Гвара 11 Инцоматика винамика и тонности	
Глава 11. Кинематика, динамика и точность	
циклоидальных передач	
11.1. Описание циклоидальной передачи	
11.2. Решение для кинематической системы	
11.3. Решение для динамической системы	
11.4. Анализ точности механизма	
11.5. Выводы	596
F 42 D " " "	
Глава 12. Расчёт четырёхпролётного анкерного участка	
линии электропередачи	
12.1. Постановка задачи	
12.2. Расчётная модель	
12.3. Расчёт по упругой нелинейной модели для одной плети	
12.4. Расчёт по модели движения для одного пролёта	
12.4. Расчёт по модели движения для трёх пролётов с гирляндами	
12.5. Учёт других нагрузок	
12.6. Выводы	625
Francia 17 Openovijejive Sava s postaveni uspes v zazav	(2)
Глава 13. Опорожнение бака с воздухом через клапан	
13.1. Постановка задачи	
13.2. Метолологические особенности залачи опорожнения сосула	627

Оглавление

Ä

9

13.3. Расчёт посредством калькулятора: исходные данные	630
13.3.1. Вычислительная модель для расчёта массового расхода	
в нестационарной постановке	631
13.3.2. Использование калькулятора: процедура и результаты	
13.4. Пошаговая имитация сброса давления	644
13.4.1. Вычислительная модель	644
13.4.2. Пошаговый алгоритм с учётом неизотермического	
характера процесса	645
13.4.3. Реализация пошагового алгоритма во Flow Simulation	
13.4.4. Сравнение результатов калькулятора и численного расчёта	655
13.5. Выводы	656
Литература	657

Ä