МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственное образовательное учреждение высшего профессионального образования

"Оренбургский государственный университет"

Л.Н. ТРЕТЬЯК

ОБРАБОТКА РЕЗУЛЬТАТОВ НАБЛЮДЕНИЙ

Рекомендовано Ученым советом государственного образовательного учреждения высшего профессионального образования – "Оренбургский государственный университет" в качестве учебного пособия для студентов, обучающихся по программам высшего профессионального образования по направлениям: 653800 "Стандартизация, сертификация и метрология", 651400 "Машиностроительные технологии оборудование", И 651900 "Автоматизация и управление", 150200 "Автомобили автомобильное хозяйство", 230100 "Сервиз, техническая эксплуатация и автомобилей", 170500 "Механизмы, ремонт аппараты производств", 170600 "Механизмы, аппараты пищевых производств".

Оренбург, 2004

ББК 30.10я 73 Т 66 УДК 389.1 (075.8)

Рецензенты кандидат технических наук, доцент В.А. Никитин кандидат технических наук, доцент А.Г. Реннер

Третьяк Л.Н.

Т 66 Обработка результатов наблюдений: Учебное пособие. – Оренбург: ГОУ ОГУ, 2004. – 171 с.

ISBN.....

Учебное пособие содержит сведения по теории оценивания погрешностей измерений cмногократными наблюдениями практические рекомендации по применению методов обработки результатов измерений. Пособие является развитием работы автора "Обработка прямых измерений с многократными наблюдениями". Расширено и дополнено сведениями из теоретических основ измерений, методами обработки косвенных измерений, а так же содержит математические методы планирования и анализа измерительного эксперимента. Приведено В соответствие существующими нормативными документами И рекомендациями. методическими Дополнено справочными данными и вариантами для выполнения курсовой работы, содержит примеры выполнения основных этапов измерений. Проводится описание программ математической обработки результатов измерений, а также описание стандартных процедур Excel.

Для студентов технических специальностей, изучающих "Метрология, сертификация", дисциплины стандартизация И "Технические измерения и приборы", а так же для выполнения проектирования "Метрология, курсового ПО дисциплинам стандартизация и сертификация", "Общая теория измерений". Пособие может быть использовано аспирантами и инженерами при обработке экспериментальных данных.

Т 2004010000 ББК 30.10я 73

© Третьяк Л.Н., 2004

© ГОУ ОГУ, 2004

ISBN....

2

Содержание

Введение	
1 Общие сведения из теории погрешности измерений	7
1.1 Общие теоретические положения	7
1.2 Классификация погрешностей измерений	11
2 Общая последовательность выполнения обработки результатов наблюдений	29
2.1 Определение точечных оценок закона распределения результатов наблюдений	30
3 Методы исключения результатов с грубыми погрешностями	42
3.1 Критерий Ирвина	45
3.2 Критерий Романовского	46
3.3 Критерий вариационного размаха	47
3.4 Критерий Диксона	47
3.5 Критерии , Райта	49
3.6 Критерий Смирнова	50
3.7 Критерий Шовене	51
4 Исключение систематических погрешностей измерений	55
5 Статистическая обработка результатов измерений	59
5.1 Определение точечных оценок исправленных результатов измерений	59
5.2 Определение закона распределения результатов измерений	61
6 Статистическая обработка результатов наблюдений при неравноточных измерениях	68
6.1 Обработка результатов отдельных групп наблюдений	68
6.2 Проверка гипотезы о неравноточности результатов наблюдений	
6.3 Определение точечных оценок параметров распределения	81
7 Определение параметров закона распределения результатов наблюдений по статистическим критерия	
7.1 Проверка нормальности распределения по критерию Пирсона	
7.2 Проверка нормальности распределения по составному критерию	
7.3 Проверка нормальности распределения по критерию согласия Колмогорова А.Н	
8 Приближённая идентификация формы и вида закона распределения результатов измерений	
9 Представление результатов измерений.	
9.1 Определение доверительных интервалов случайной погрешности	
9.2 Определение границ неисключенной систематической погрешности результата	
измерений	101
9.3 Правила округления результатов измерений	
9.4 Формы представления результатов измерений	
9.5 Запись результата измерений при прямых измерениях	
10 Обработка результатов косвенных измерений.	
10.1 Обработка результатов косвенных измерений при линейной зависимости	
10.2 Обработка результатов косвенных измерений при нелинейной зависимости	
11 Обработка результатов совместных измерений	
11.1 Методика регрессионного анализа	124
11.2 Проверка статистической гипотезы об адекватности модели	128
12 Обработка результатов наблюдений при прямых однократных измерениях	
13 Математические методы планирования и анализа активного эксперимента	
13.1 Проверка гипотезы о нормальном законе распределения погрешностей эксперимен	
13.2 Проверка гипотезы о воспроизводимости опытов.	
14 Автоматизация обработки результатов наблюдений при многократных измеренях	
15 Тематика курсовых работ	
16 Оформление курсовой работы	
Список использованных источников.	
Приложение А	
Приложение Б	
Приложение В	
Приложение Г	
Приложение Д	
Приложение Е	
Приложение Ж	
Приложение И	166
Приложение К	
Приложение Л	
r	

· · · Ä

Приложение М	170
Приложение Н	171
- Г Прелметный указатель	172

4

. **Ä**

Введение

Измерения не являются самоцелью, а имеют определенную область использования, т. е. проводятся для достижения некоторого конечного результата в соответствии с поставленной задачей.

В зависимости от назначения измерений (для контроля параметров продукции, для испытаний образцов продукции с целью установления ее технического уровня, для диагностики технического состояния машин и физиологического уровня биологических объектов, для научных исследований, для учета материальных и энергетических ресурсов и др.) конечный результат в том, или ином виде отражает требуемую информацию о количественных свойствах объектов, явлений и процессов (в том числе, технологических). Причем такая информация может быть получена путем измерения, в процессе испытания или контроля.

Основным объектом измерения являются физические величины.

Физическая величина согласно / 9 / это одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.

В Международном словаре основных и общих терминов метрологии" (У1М—93) применено понятие величина (измеримая), раскрываемое как "характерный признак (атрибут) явления, тела или вещества, которое может выделяться качественно и определяться количественно"

Высокая точность измерения и достоверность научных результатов имеет большое значение, как в инженерной, так и научной деятельности.

На практике существует несколько способов повышения точности измерений: увеличение точности средств измерения (СИ), совершенствование методов измерений, и если это возможно, увеличение числа повторных измерений.

Многократные измерения одной и той же величины встречаются при аттестации и поверке СИ, измерительных каналов, информационных измерительных систем, при контроле технологических процессов, при испытаниях изделий, при необходимости проведения экспериментального статистического описания переменных величин, а также в научно-исследовательских работах /1/.

обработкой результатов наблюдений Под следует понимать определенным правилам, выполненные ПО т. е. регламентированные процедуры по получению результата измерений из серии наблюдаемых значений (в случае многократных измерений). В простейшем случае (однократные измерения) результат измерений (испытаний) является собственно наблюдаемым значением. Под наблюдаемым значением следует понимать значение характеристики, полученное в результате единичного наблюдения. Физические величины следует рассматривать как частный случай характеристик, которым присуща количественная индивидуальность (размер). Значение, которого получают выполнением регламентированного