Ä

РАКЕТНО-КОСМИЧЕСКОЕ ПРИБОРОСТРОЕНИЕ И ИНФОРМАЦИОННЫЕ СИСТЕМЫ 2015, том 2, выпуск 1, с. 42-46

КОСМИЧЕСКИЕ СИСТЕМЫ СВЯЗИ И РЕТРАНСЛЯЦИИ: ИНФОРМАЦИОННЫЕ СИСТЕМЫ КОСМИЧЕСКОЙ ТЕХНИКИ

УДК 621.391:623.61

К оценке помехозащищенности радиосистем с широкополосными сигналами

 Π . 3. Баулин¹, М. А. Кобелев², А. И. Куприянов³

1,2 OAO «Российские космические системы»
3 д.т.н., профессор Московского авиационного института (национального исследовательского университета)

e-mail: $^{1,2}contact@spasecorp.ru$, $^{3}mai@mai.ru$

Аннотация. Рассматриваются потенциальные характеристики помехозащищенности цифровых систем передачи информации, использующие сигналы с расширением спектра. В качестве моделей помех анализируются шумовые, узкополосные (квазигармонические) и имитирующие сигналоподобные. В качестве критерия качества помехозащиты используется вероятность ошибки приема символа.

Ключевые слова: помехозащищенность, расширение спектра, узкополосные и имитирующие помехи

To the Estimation of Broadband Radio Systems Interference Immunity

P. Z. Baulin¹, M. A. Kobelev², A. I. Kuprijanov³

^{1,2}Joint Stock Company "Russian space systems"

³doctor of engineering science, professor of the Moscow aviation institute
(national research university)

e-mail: 1,2contact@spasecorp.ru, 3mai@mai.ru

Abstract. Potential characteristics of protection against hindrances of digital systems the information transfers using signals with expansion of a spectrum are considered. As models of hindrances are analyzed noise, narrow-band (as though harmonious) and similar to a signal hindrances. As criterion of quality protection against hindrances the probability of a mistake of reception of a symbol is used.

Key words: protection against hindrances, signals with expansion of spectrum, narrow-band and similar to a signal hindrances

Ä

Введение

Для информационных систем современных ракетно-космических комплексов весьма актуальна проблема обеспечения помехоустойчивости и помехозащищенности. При этом считается, что именно сигналы с расширением спектра способны обеспечивать высокую помехозащищенность, эффективно противостоять средствам активного радиопротиводействия [2-4], то есть у систем разного функционального назначения, использующих подобные сигналы, высокая помехозащищенность. В данной статье приводятся результаты оценки потенциальной помехозащищенности систем с сигналами, формируемыми с использованием методов расширения спектра [4]. В качестве моделей помеховой обстановки рассматриваются шумовые, узкополосные (станционные) и имитирующие помехи.

1. Действие помех на систему приема и регенерацию символов

Сигналы с расширением спектра формируются за счет фазовой модуляции расширяющей последовательностью. Практические схемы приема таких сигналов используют, как правило, подсистемы регенерации символов с последующей согласованной (корреляционной) обработкой регенерированной последовательности.

1.1. Шумовая помеха

Вероятность ошибки приема (регенерации) символа сигнала в условиях действия шумовой помехи известна и равна [1-4]

$$p_{\text{ош}} = p(s_0)p(s_1 \mid s_0) + p(s_1)p(s_0 \mid s_1) = \frac{1}{2} \left[1 - \Phi\left(\sqrt{\frac{Q}{2N}(1-\rho)}\right) \right], \quad (1)$$

где ρ — коэффициент взаимной корреляции сигналов, которыми передаются противоположные символы; в рассматриваемом случае оптимальных противоположных сигналов $\rho=-1$; Q — энергия сигнала — $Q=P_{\rm c} au$; N — суммарная спектральная

плотность шума приемника и организованной помехи; $\Phi(x)$ — интеграл вероятности в форме

$$\Phi(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-z^2} dz.$$
 (2)

В популярных пакетах программ для математических вычислений интеграл вероятностей именуется $\Phi(x) = \operatorname{erf}(x)$.

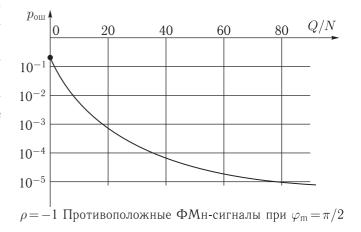


Рис. 1. Зависимость вероятности ошибки от соотношения сигнал/шум

Зависимость вероятности ошибки от соотношения сигнал/шум представлена на рис. 1 [1].

1.2. Синусоидальная помеха

Синусоидальная (узкополосная, станционная) помеха с уровнем, не приводящим к срыву синхронизма в подсистемах слежения за несущей и тактовой частотами, вызовет флуктуации фазы принимаемого и обрабатываемого сигнала. При таком помеховом воздействии на входе демодулятора приемника широкополосного сигнала наблюдается колебание:

$$x(t) = s(t) + u_{\Pi}(t) + n(t) =$$

$$= a_{\rm c} \cos \left[\omega_{\rm c} t + g(t) \cos \varphi_{\rm M} + \varphi_{\rm 0}\right] + a_{\Pi} \cos \omega_{\Pi} t + n(t), \tag{3}$$

где s(t) — полезный сигнал; $u_{\Pi}(t)$ — узкополосная помеха, вероятно и со скользящей частотой; n(t) — аддитивный шум; $\omega_{\rm c}$ — частота несущей сигнала; ω_{Π} — частота помехи; $g(t)=\pm 1$ — модулирующая

Ä

РАКЕТНО-КОСМИЧЕСКОЕ ПРИБОРОСТРОЕНИЕ И ИНФОРМАЦИОННЫЕ СИСТЕМЫ т. 2 вып. 1 2015

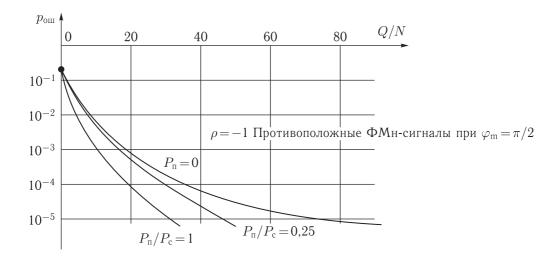


Рис. 2. Зависимость вероятности ошибки от соотношения сигнал/шум при наличии узкополосной помехи

функция сигнала; $\varphi_{\text{м}}$ — индекс фазовой модуляции сигнала, расширяющей спектр последовательностью g(t).

При этом на выходе демодулятора

$$\xi_{c} = \pm u_{c} + u_{\pi} \cos \psi + n'(t) = \pm u_{c} + \xi(t),$$

где $\psi(t)=(\omega_{\rm c}-\omega_{\rm n})\,t+\varphi_{\rm n}$ — случайная фаза помехового колебания, равномерно распределенная на сегменте $\pm\pi.$

Вероятность ошибки компаратора, принимающего решения по каждому принятому символу в соответствии с правилом

$$g^* = \begin{cases} +1, & \text{если } \xi_c \geqslant 0; \\ -1, & \text{если } \xi_c < 0. \end{cases}$$
 (4)

В среднем по множеству символов составит

$$\langle p_{\text{ош}} \rangle = \left\langle \Phi \left(\frac{u_{\text{c}} + u_{\text{п}} \cos \psi}{\sigma} \right) \right\rangle,$$
 (5)

где $\Phi(\cdot)$ — интеграл вероятностей; σ — с. к. о. шума; угловые скобки означают усреднение по множеству.

Численное интегрирование и результат усреднения в (5) позволяет дополнить приведенные на рис. 1 графики зависимости вероятности ошибок для ситуаций, когда наряду с аддитивными шумами на демодулятор действует узкополосная помеха рис. 2.

1.3. Имитирующая помеха

Ä

При действии имитирующей помехи сигнал на выходе интегратора корреляционного приемника составит

$$\xi_{\rm c} = \pm u_{\rm c} + \int_{0}^{\tau_{\rm H}} u_{\rm \Pi} g_{\rm \Pi}(t) \cos \psi(t) \, dt + \int_{0}^{\tau_{\rm H}} n(t) \, dt, \quad (6)$$

где $g_{\rm II}(t)=\pm 1$ — модулирующая функция сигналоподобной помехи; $\tau_{\rm II}$ — длительность символа полезного сигнала.

Искажение принятого сигнала помехой будет наиболее сильным в том случае, когда помеха в наибольшей степени совпадает по параметрам с подавляемым сигналом. Прежде всего — по длительности символа и несущей частоте. При этом $\psi(t)$ в (6) равна нулю, $\cos\psi(t)=1$ и вероятность ошибки приема каждого символа сигнала будет максимальной. Но помеха не может быть синхронизована с подавляемым сигналом по моментам начала и конца каждого символа в точке приема. Временной сдвиг начала каждого символа сигналоподобной помехи относительно начала интегрирования (момента t=0 в (2)) случаен и равновероятен на сегменте $\tau\in[1;\tau_{\rm H}]$. Поэтому среднее значение помеховой составляющей в (2) составит

$$\pm u_{\Pi} \int_{0}^{\tau_{H}} (\tau_{H} - 2\tau) \frac{1}{\tau_{H}} d\tau = 0, \tag{7}$$

РАКЕТНО-КОСМИЧЕСКОЕ ПРИБОРОСТРОЕНИЕ И ИНФОРМАЦИОННЫЕ СИСТЕМЫ т. 2 вып. 1 2015

$$u_{\Pi}^{2} \int_{0}^{\tau_{H}} (\tau_{H} - 2\tau)^{2} \frac{1}{\tau_{H}} d\tau = \frac{u_{\Pi}^{2} \tau_{H}^{2}}{3} = P_{\Pi} \frac{\tau_{H}^{2}}{6} = \frac{2}{3} P_{\Pi} \frac{1}{\Delta f_{c}^{2}},$$
(8)

где $\Delta f_{\rm c}=rac{2}{ au_{
m c}}$ — ширина спектра сигнала (и сигналоподобной помехи); $P_{
m n}$ — мощность помехи в точке приема.

Таким образом, действие имитирующей помехи эквивалентно действию аддитивного шума со спектральной плотностью $N_{\Pi}=\frac{2}{3}\frac{P_{\Pi}}{\Delta f_{\rm c}}$ и, следовательно, с достаточной степенью подробности описывается зависимостью рис. 1.

2. Действие помех на систему синхронизации

2.1. Синусоидальная помеха

Скользящая по частоте узкополосная (в пределе — синусоидальная) помеха, попав в полосу захвата системы Φ AП по несущей, может вызвать ложный захват и, перестраиваясь по частоте, увести частоту гетеродина, вызвав срыв синхронизации. Это, естественно, сорвет и демодуляцию сигнала.

Считается [1], что для системы Φ АП порядка второго и выше время вхождения в синхронизм определяется приближенным соотношением

$$t_{\text{3axb}} \simeq \alpha \frac{\left(\Delta f_{\text{p}}\right)^2}{\left(\Delta f_{\text{III}}\right)^3},$$
 (9)

где $\Delta f_{\rm p}$ — расстройка по частоте; $\Delta f_{\rm m}$ — шумовая полоса системы ФАП; $\alpha=4\dots 5$ — коэффициент, зависящий от передаточной функции контура системы ФАП.

Очевидно, что с наибольшей вероятностью захват системы Φ AП произойдет при расстройке частоты помехи, близкой к величине шумовой полосы. Поэтому можно считать, что время захвата составит $t_{\text{захв}} \simeq \frac{3\dots 4}{\Delta f_{\text{III}}}$ и в течение этого времени скользящая по частоте помеха будет присутствовать в полосе захвата системы Φ AП. Следовательно, скорость перестройки частоты скользящей помехи, максимизирующая вероятность ложного захвата и срыв

синхронизации за счет увода частоты опорного колебания, должна быть не больше чем

$$\frac{\partial f}{\partial t} \sim \frac{\Delta f_{\text{III}}}{t_{\text{3AXB}}} = (0.25 \dots 0.30) \left(\Delta f_{\text{III}}\right)^2, \tag{10}$$

что согласуется с данными, приведенными в [1].

При большей скорости перестройки вероятность захвата частоты помехового колебания и срыва синхронизации должна уменьшаться.

Другим фактором, влияющим на вероятность успеха деструктивного воздействия уводящей по частоте помехи на систему синхронизации, является мощность помехи. Захват частоты помехи наиболее вероятен в случае превышения мощности помехи над мощностью несущей сигнала $P_{\Pi} > P_{\rm c}$.

Точно определить вероятность срыва синхронизации скользящей помехой довольно сложно в силу неизвестности многих параметров, определяющих структуру систему приема и обработки сигнала. Основательные результаты можно получить только экспериментально. Но можно качественно иллюстрировать приведенные выше рассуждения о зависимости вероятности срыва системы синхронизации графиком рис. 3.

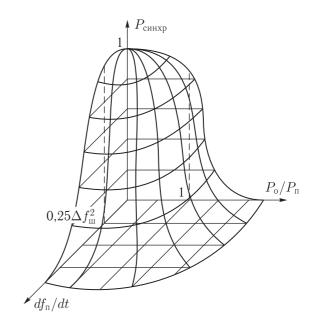


Рис. 3. Качественная зависимость вероятности срыва синхронизации скользящей по частоте узкополосной помехой

РАКЕТНО-КОСМИЧЕСКОЕ ПРИБОРОСТРОЕНИЕ И ИНФОРМАЦИОННЫЕ СИСТЕМЫ т. 2 вып. 1 2015

2.2. Шумовая помеха

Обычно считается [2], что синхронизм в системе Φ АП возможен, если соотношение сигнал/шум в полосе Φ АП не хуже 5–10 по мощности. Значит, условие срыва сопровождения при слежении за несущей принимаемого сигнала представляется в виде

$$(N_{\text{IIII}} + N_{\text{III}}) \Delta f_{\text{III}} > 5, \tag{11}$$

где $N_{\rm шп}$ — спектральная плотность шумовой помехи, а $N_{\rm ш}$ — спектральная плотность; $\Delta f_{\rm ш}$ — как и прежде, шумовая полоса системы ФАП.

Поскольку мощность организованной шумовой помехи, скорее всего, превосходит мощность собственных шумов приемника, влиянием спектральной плотности $N_{\rm Ш}$ можно пренебречь. Тогда приведенная ко входу приемника мощность организованной в ходе радиоэлектронного противодействия шумовой помехой, согласованной с полезным сигналом по ширине спектра, должна для срыва синхронизма иметь мощность

$$P_{\Pi} > 5 \frac{\Delta f_{\rm c}}{\Delta f_{\Pi}} \tag{12}$$

тем большую, чем шире спектр подавляемого сигнала.

2.3. Имитирующая помеха

Имитирующая помеха, даже согласованная с сигналом по ширине спектра, не может быть

когерентной сигналу в точке приема. Поэтому она будет помехой для системы ФАП постольку, поскольку накрывает шумовую полосу. Используя то же условие о соотношении сигнал/шум порядка 5–10 по мощности, можно утверждать, что мощность имитирующей помехи на входе приемника должна также составлять $P_{\rm II} > 5\frac{\Delta f_{\rm C}}{\Delta f_{\rm III}}$. Это позволяет сделать вывод о том, что имитирующая, сигналоподобная приеха, которая традиционно считается самой опасной и поэтому предпочтительной для организации радиоэлектронного противодействия, в случае сигнала с расширением спектра не опаснее шумовой.

Ä

Список литературы

- 1. *Витерби Э.Д.* Принципы когерентной связи. М.: Сов. радио, 1970. 392 с.
- 2. *Куприянов А.И.*, *Шустов Л.Н.* Радиоэлектронная борьба. Основы теории. М.: Вузовская книга, 2011. 800 с.
- 3. *Борисов В.И.* Помехозащищенность систем радиосвязи. Основы теории и принципы реализации. М.: Наука, 2009. 358 с.
- 4. Помехозащищенность систем со сложными сигналами / Под ред. Г.И.Тузова. М.: Радио и связь, 1985. 264 с.

Ä