УДК 624.012.35 001.4(07) ББК 38.53 я 7 К-28

Рецензент кандидат технических наук В.О.Штерн

Касимов Р.Г.

К 28 Испытание железобетонной балки на изгиб с разрушением по наклонному сечению; методические указания к лабораторной работе №3 / Р.Г. Касимов - Оренбург: ГОУ ОГУ, 2009. - 12 с.

Методические указания предназначены для проведения лабораторной работы N = 3 по дисциплине «Железобетонные и каменные конструкции» для студентов по специальности 270102 (ПГС).

ББК 38.53 я 7

3306000000	
Ц	

©Касимов Р.Г., 2009 ©ГОУ ОГУ, 2009

2

Содержание

1	Цель работы	4
2	Задачи испытаний	4
3	Освидетельствование опытного образца	4
4	Испытание балки	5
5	Расчет балки по предельным состояниям	7
5.1	Определение главных сжимающих и растягивающих напряжений в	
	бетоне	7
5.2	Определение нагрузки, вызывающей появление наклонных трещин	8
5.3	Определение ширины раскрытия наклонных трещин от кратковременного	
	действия нагрузки	8
5.4	Определение ожидаемой разрушающей нагрузки	9
6	Сравнение результатов расчетов с опытными данными	10
7	Контрольные вопросы	11
	Список использованных источников.	12

1 Цель работы

Исследование прочности, жесткости и трещиностойкости железобетонной балки при изгибе с разрушением её по наклонному сечению.

2 Задача испытаний

- 2.1 Изучить деформации бетона на участке, где возможен срез балки от действия поперечной силы (от опоры до ближайшего груза). Построить график деформации.
- 2.2 Определить нагрузку F_{crc} соответствующую появлению первой трещины.
- 2.3 Получить данные об очередности появления и характере развития трещин.
- 2.4 При нагрузке, равной, примерно, половине разрушающей, выявить трещину с максимальной шириной раскрытия и измерить её.
 - 2.5 Установить значение разрушающей нагрузки F.

3 Освидетельствование опытного образца

- 3.1 Освидетельствование опытного образца следует проводить до и после испытания
- 3.2 До испытания определяют физико-механические характеристики бетона, арматуры и размеры, необходимые для расчетов.
- 3.3 После испытания измерить длину проекции опасной наклонной трещины C_{θ} на продольную ось балки, зарисовать схему расположения трещин и разрушенные участки балки.
- 3.4 Полученные в ходе освидетельствования балки данные заносят в таблицу 3.1 и 3.2.

Таблица 3.1 - Основные геометрические характеристики балки

Наименование величины,	Обозначение	Фактические		
единицы измерения		значения		
1. Длина пролета, мм	l_0			
2 Ширина балки, мм	b			
3. Высота балки, мм	h			
4. Рабочая высота, мм	h_0			
5. Диаметр (мм) и класс поперечной арматуры	d_{sw}			
6. Расстояние от опор до точек приложения				
нагрузок F/2, мм	а			
7. Проекции опасного наклонного сечения на				
продольную ось балки, мм	C_{0}			
8. Шаг стержней в приопорной (S_1) и				
центральной (S_2) частях балок, мм	S_1/S_2			
Примечание - Все размеры должны быть определены с точностью до 0,1 см				

Таблица 3.2 - Физико-механические характеристики бетона и поперечной арматуры

Характеристики бетона или	Условные	Фактические
арматуры, единицы измерения	обозначения	значения
1. Класс прочности бетона, МПа	B	
2. Призменная прочность бетона при сжатии,	R_b	
МПа		
3. Призменная прочность при растяжении, МПа	R_{bt}	
4. Рабочая высота, мм	E_b	
5. Условный предел текучести (или физический	σ_{02}	
предел текучести) для поперечной арматуры,	$(u \pi u \sigma_v)$	
МПа	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
6. Модуль упругости стали, МПа	E_s	

4 Испытание балки

Схема испытания балки и размещение измерительных приборов показаны на рисунке 4.1.

Во время испытаний нагрузка прикладывается ступенями, равными 0,1 разрушающей силы F, поэтому до начала испытаний определяют теоретическую разрушающую нагрузку. В ходе испытаний фиксируют деформации бетона. С помощью переносного микроскопа МПБ-2 с ценой деления шкалы 0,05...0,1 мм наблюдают за образованием и развитием трещин. Отчеты по прибором заносят в таблицу 4.1. При уровне нагрузки, примерно 0,8