УДК 533.601.16 ББК 22.253.315 К89

Рецензенты:

В. М. Лебедев, д.т.н., профессор, профессор кафедры «Теплоэнергетика» ОмГУПС, заслуженный энергетик РФ;

Н. С. Галдин, д.т.н., профессор, зав. кафедрой «Гидромеханика» СибАДИ

Кузнецов, В. И.

К89 Физическая и математическая модели рабочего процесса вихревой трубы : монография / В. И. Кузнецов, В. В. Макаров ; Минобрнауки России, ОмГТУ. – Омск : Изд-во ОмГТУ, 2018. – 232 с. : ил.

ISBN 978-5-8149-2671-5

Описан эффект Ранка, разработаны физическая и математическая модели рабочего процесса вихревой трубы. Доказано, что количество удельной работы, совершаемой осевыми слоями газа над периферийными в вихревой трубе, определяется полной температурой подогретого потока, отношением полных давлений подогретого и охлажденного потоков газа, а также их теплофизическими свойствами.

Книга рассчитана на научных и инженерно-технических работников, занимающихся исследованием вихревого эффекта и разработкой новых конструкций вихревых труб, а также на студентов, изучающих курс аэрогазодинамики.

УДК 533.601.16 ББК 22.253.315

Печатается по решению научно-технического совета Омского государственного технического университета. Протокол N2 11 от 26.06.2018 г.

ISBN 978-5-8149-2671-5

© ОмГТУ, 2018

Ä

ОГЛАВЛЕНИЕ

ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ	5
ВВЕДЕНИЕ	7
1. ФИЗИЧЕСКАЯ МОДЕЛЬ ЭФФЕКТА РАНКА	8
2. ТЕЧЕНИЕ ГАЗА В СОПЛОВОМ СЕЧЕНИИ	9
3. УЧЕТ ВЯЗКОСТИ В ПОТОКЕ ГАЗА	17
4. РАСЧЕТ ЭНЕРГООБМЕНА МЕЖДУ ОСЕВЫМ И ПЕРИФЕРИЙНЫМ ПОТОКАМИ ГАЗА В ПРОТИВОТОЧНОЙ ВИХРЕВОЙ ТРУБЕ	18
5. РАСЧЕТ ТЕПЛООБМЕНА В ВИХРЕВОЙ ТРУБЕ	19
6. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ДЛЯ РАСЧЕТА ПАРАМЕТРОВ ГАЗА В ПРОТИВОТОЧНОЙ ВИХРЕВОЙ ТРУБЕ	29
7. ЭНЕРГООБМЕН В ВИХРЕВОЙ ТРУБЕ СИЛАМИ ВЯЗКОСТИ	42
8. КРИТЕРИАЛЬНАЯ БАЗАВИХРЕВОГО ЭФФЕКТА РАНКА	48
9. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ПРОЦЕССА ЭНЕРГЕТИЧЕСКОГО РАЗДЕЛЕНИЯ ГАЗА В ПРОТИВОТОЧНОЙ ВИХРЕВОЙ ТРУБЕ	54
10. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВИХРЕВОЙ ТРУБЫ	<i>c</i> 1
С ДОПОЛНИТЕЛЬНЫМ ПОТОКОМ	
10.1. Метод визуализации газового потока	
10.2. Описание экспериментальной установки	
10.4. Погрешность замера параметров	
10.5. Результаты экспериментального исследования	
10.6. Выводы по главе 7	
11. ОПТИМИЗАЦИЯ ПАРАМЕТРОВ ПРОТИВОТОЧНОЙ ВИХРЕВОЙ ТРУБЫ	
И ВЛИЯНИЕ НЕАДИАБАТНОСТИ НА ИХ ВЕЛИЧИНУ	
11.1. Виды воздействий на газ в вихревой трубе	88
11.2. Возможные профили рабочей камеры вихревой трубы	89
11.3. Расчет основных параметров гиперболы, огибающей линии	
вращающегося потока газа на выходе из тангенционального сопла	103
11.4. Вид кривой второго порядка, описывающей образующую линию	
вращающегося потока газа на выходе из диафрагмы охлажденного	100
ПОТОКа	109
11.5. Расчет основных параметров гиперболы, огибающей линии вращающегося потока на выходе из диафрагмы	116
вращающегося потока на выходе из диафрагмы11.6. Математическая модель охлаждаемой противоточной	110
вихревой трубы	125
r r J	

12. НЕАДИАБАТНЫЕ ВИХРЕВЫЕ ТРУБЫ, РАБОТАЮЩИЕ НА ГАЗАХ,	
ПОДЧИНЯЮЩИХСЯ ОСНОВНЫМ ЗАКОНАМ ГАЗОВОЙ ДИНАМИКИ	. 142
12.1. Анализ состояния вопроса и постановка задачи исследования	
12.1.1. Вихревые трубы для охлаждения и нагревания	
12.2. Физические модели неадиабатной вихревой трубы, работающей на газе,	
подчиняющей основным законам газовой динамики	. 150
12.3. Математическая модель неадиабатной (охлаждаемой)	
вихревой трубы	. 151
12.4. Методика расчета оптимальных параметров неадиабатной	
(охлаждаемой) вихревой трубы	. 165
12.5. Результаты расчета оптимальных параметров неадиабатной	
вихревой трубы	. 182
ЗАКЛЮЧЕНИЕ	. 185
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	. 187
І. МЕТОДИКА РАСЧЕТА ОПТИМАЛЬНЫХ ПАРАМЕТРОВ ПРОТИВОТОЧНОЙ ВИХРЕВОИ ТРУБЫ	. 189

III. МЕТОДИКА РАСЧЕТА ОПТИМАЛЬНЫХ ПАРАМЕТРОВ НЕАДИАБАТНОЙ (ОХЛАЖДАЕМОЙ) ПРОТИВОТОЧНОЙ ВИХРЕВОЙ ТРУБЫ, РАБОТАЮЩЕЙ НА ГАЗЕ, ПОЛЧИНЯЮШЕМСЯ ОСНОВНЫМ ЗАКОНОМ ГАЗОВОЙ ЛИНАМИКИ 21

II. МЕТОДИКА РАСЧЕТА ГАЗОДИНАМИЧЕСКИХ ПАРАМЕТРОВ ПРОТИВОТОЧНОЙ ВИХРЕВОЙ ТРУБЫ ПО ГЕОМЕТРИЧЕСКИМ

PA3MEPAM 201