

Издание осуществлено при поддержке Российского фонда фундаментальных исследований по проекту 08-08-07021

Рецензент: доктор тех. наук, проф. Е. В. Славнов

Янков В. И., Боярченко В. И., Первадчук В. П., Глот И. О., Шакиров Н. В. Переработка волокнообразующих полимеров. Основы реологии полимеров и течение полимеров в каналах. — Москва–Ижевск: НИЦ «Регулярная и хаотическая динамика», Институт компьютерных исследований, 2008. — 264 с.

В книге рассматриваются основы реологии волокнообразующих полимеров и приводятся постановки и решения задач механики жидкости. Большое внимание уделено различным видам граничных условий жидкости у твёрдых границ. Приводятся решения задач о течении суспензий полимеров в различных загрузочных устройствах, течении полимеров в круглых трубах и каналах. Значительная часть книги посвящена течению реагирующих и полимеризующихся жидкостей (масс) в трубчатом реакторе вытеснения.

Для научных и инженерно-технических работников промышленности химических волокон и переработки пластмасс, лаков и красок. Для специалистов, студентов и аспирантов, изучающих вопросы переработки полимеров.

Табл. 9. Илл. 111. Библиогр. список: 183 назв.

ISBN 978-5-93972-705-1

- © В. И. Янков, В. И. Боярченко, В. П. Первадчук, И. О. Глот, Н. В. Шакиров, 2008
- © НИЦ «Регулярная и хаотическая динамика», 2008

http://shop.rcd.ru http://ics.org.ru

• • •

Оглавление

ПРЕДИСЛОВИЕ5
Глава 1. КЛАССИФИКАЦИЯ ХИМИЧЕСКИХ ВОЛОКОН И КРАТ-
кие сведения о методах их получения
Глава 2. ОСНОВНЫЕ УРАВНЕНИЯ МЕХАНИКИ ЖИДКОСТЕЙ 15
Сохранение массы. Уравнения движения17
Уравнение сохранения энергии. Диссипативная функция20
Реологические уравнения состояния сплошной среды22
Постановка и решение задач механики жидкостей51
Скольжение жидкостей у твердых границ56
Глава 3. ПОЛУЧЕНИЕ СУСПЕНЗИЙ ПОЛИМЕРОВ И РАЗЛИЧ-
НЫХ ДОБАВОК
Аппаратурное оформление процессов78
Течение жидкости в открытом прямоугольном канале82
Течение жидкости по поверхности вращающегося конуса88
Течение жидкости по поверхности вращающегося диска93
Течение жидкости по внутренней поверхности неподвижной
трубы95
Течение жидкости между неподвижными коаксиальными ци-
линдрами97
Течение на начальном участке плоского и кольцевого каналов 97
Стационарное течение в кольцевом зазоре115
Стационарное течение в плоском канале126
Течение между вращающимися конусами и гладкими дисками 130
Глава 4. ТЕЧЕНИЕ РАСТВОРОВ И РАСПЛАВОВ ПОЛИМЕРОВ
В КРУГЛЫХ ТРУБАХ136
Течение аномально вязких жидкостей на входе в трубу136
Изотермическое течение
Неизотермическое течение144

• • •

Стационарное течение полимерных жидкостей	159
Изотермическое течение	159
Неизотермическое течение	163
Стационарное течение жидкости в канале фильеры для нане	
сения оболочки на комплексную нить	167
Течение с положительным градиентом давления	
Течение с отрицательным градиентом давления	177
Определение давлений в канале фильеры и осевых усилий	í,
действующих на нить	179
Глава 5. ТЕЧЕНИЕ РЕОКИНЕТИЧЕСКИХ ЖИДКОСТЕЙ	186
Влияние диссипации механической энергии на течение	
жидкости в трубах и каналах	187
Нестационарное течение	
Течение при постоянном градиенте давления	195
Течение при постоянном расходе	
Квазистационарный подход к решению задачи о тепловом	
воспламенении реокинетических жидкостей в круглой трубе	206
Глава 6. ТЕЧЕНИЕ ПОЛИМЕРИЗУЮЩИХСЯ МАСС В ТРУБЧА	A -
ТОМ РЕАКТОРЕ ВЫТЕСНЕНИЯ	216
Постановка задачи	216
Влияние диссипативного тепловыделения на гидродинамику	
и теплофизику процесса	218
Влияние осевого теплопереноса на течение	
Влияние радиального распределения температурных	
и концентрационных полей	234
Низкотемпературный режим полимеризации	
Высокотемпературный режим полимеризации	
THICOV THITEDATUDLI	252