УДК 629.33.016.5(075.8) ББК 39.33-04я73 С 60

Рецензент - кандидат технических наук, доцент А.П. Пославский

Сологуб, В.А.

С 60 Автопрактикум: учебное пособие: в трёх частях / В.А.Сологуб; Оренбургский гос. ун-т — Оренбург: ОГУ, 2012. — Ч 2: Трансмиссия большегрузных автомобилей. - 111 с.

Учебное пособие содержит теоретические основы конструкции трансмиссии большегрузных автомобилей, конструкцию деталей, узлов и агрегатов трансмиссии большегрузных автомобилей различных марок.

Пособие составлено в соответствии с СТО 02069024.110-2008 ФГБОУ ОГУ и предназначено для выполнения лабораторных работ по учебной дисциплине «Автопрактикум» для студентов очной формы обучения специальностей 190702.65 Организация и безопасность движения, 190109.65 Наземные транспортно-технологические средства и направлений подготовки 190600.62 Эксплуатация транспортно-технологических машин и комплексов, 190700.62 Организация перевозок и управление на транспорте.

УДК 629.33.016.5(075.8) ББК 39.33-04я73

© Сологуб В.А. 2012

© ОГУ, 2012

Содержание

3 Трансмиссия большегрузных автомобилей	5
3.1 Общее устройство трансмиссии	5
3.1.1 Классификация трансмиссий.	5
3.1.2 Компоновка трансмиссий.	7
3.2 Сцепление большегрузных автомобилей	8
3.2.1 Назначение и устройство сцепления	8
3.2.2 Однодисковое сцепление автомобилей	9
3.2.3 Двухдисковое сцепление автомобилей	13
3.3 Приводы выключения сцепления	17
3.3.1 Механический привод выключения сцепления	17
3.3.2 Гидравлический привод выключения сцепления с	
пневмогидроусилителем	19
3.3.3 Механический привод выключения сцепления с	
пневмоусилителем	23
3.4 Коробки передач и раздаточные коробки большегрузных	
автомобилей	27
3.4.1 Назначение устройство и принцип работы коробок передач	27
3.4.2 Коробка передач автомобилей ЗИЛ	27
3.4.3 Коробка передач автомобилей КамАЗ	32
3.4.4 Коробка передач автомобилей Урал	40
3.4.5 Коробка передач автомобилей МАЗ	32
3.4.6 Коробка передач автомобилей КрАЗ	52
3.4.7 Назначение и классификация раздаточных коробок	
автомобилей	61
3.4.8 Раздаточная коробка автомобилей ЗИЛ	63
3.4.9 Раздаточная коробка автомобилей КамАЗ	65
3.4.10 Раздаточная коробка автомобилей Урал	66
3.4.11 Раздаточная коробка автомобилей КрАЗ	69

Ä

	Ä
	М

3.5 Карданные передачи большегрузных автомобилей	71
3.5.1 Назначение и классификация карданных передач	71
3.5.2 Карданная передача автомобилей ЗИЛ	73
3.5.3 Карданная передача автомобилей КамАЗ	76
3.5.4 Карданная передача автомобилей Урал	77
3.5.5 Карданная передача автомобилей МАЗ	79
3.5.6 Карданная передача автомобилей КрАЗ	80
3.6 Главные передачи и дифференциалы большегрузных	
автомобилей	82
3.6.1 Назначение и классификация главных передач и	
дифференциалов	82
3.6.2 Главная передача и дифференциал автомобилей ЗИЛ	84
3.6.3 Главные передачи и дифференциалы автомобилей КамА3	86
3.6.4 Главные передачи и дифференциалы автомобилей Урал	92
3.6.5 Главные передачи и дифференциалы автомобилей МАЗ	94
3.6.6 Главные передачи и дифференциалы автомобилей КрА3	102
3.7 Полуоси большегрузных автомобилей	106
3.8 Контрольные вопросы	108
Список использованных источников.	110

3 Трансмиссия большегрузных автомобилей

3.1 Общее устройство трансмиссии

Трансмиссией называется совокупность агрегатов, предназначенных для передачи крутящего момента от двигателя к ведущим колесам автомобиля и для изменения величины и направления этого момента.

К трансмиссиям предъявляют следующие основные требования: высокая надежность и возможно меньшие потери передаваемой энергии (высокий КПД) во всем диапазоне режимов работы машины; обеспечение функциональных требований, предъявляемых к машине данного типа; возможно меньшие габаритные размеры и масса; рациональный подбор передаточных чисел для обеспечения требуемых значений тяговых усилий и скоростей движения машины; вращение колес с различной скоростью и осуществление блокировки как межосевых, так и межколёсных дифференциалов для улучшения проходимости в тяжелых условиях эксплуатации; легкость управления; удобное расположение органов управления; доступность и малая трудоёмкость технического обслуживания и ремонта; шум и вибрация от трансмиссии в пределах установленных норм; возможность отбора мощности для привода рабочего оборудования, дополнительных механизмов и устройств.

3.1.1 Классификация трансмиссий

По способу передачи энергии трансмиссии делят на механические, гидромеханические, электромеханические, гидрообъёмные.

В механических трансмиссиях передача энергии происходит за счёт механического трения в сцеплениях, а также соединениями валов, шарнирами и зубчатыми колёсами.

В гидромеханических трансмиссиях между двигателем и механической частью трансмиссии устанавливают гидротрансформатор или гидромуфту, осуществляя гидравлическую связь двигателя с трансмиссией. Гидромуфты не изменяют передаваемый вращающий момент и всегда работают с проскальзыванием турбинного колеса относительно