СОДЕРЖАНИЕ

Авиационная и ракетно-космическая техника

Белоногов О.Б. Экспериментальные исследования истечения и безразмерных параметров течения потоков жидкости в дроссельных окнах золотниковых	
гидрораспределителей с вращающимися гильзами	
Золотов А.А., Нуруллаев Э.Д. Прогнозирование числа отказов программного обеспечения космических аппаратов	24
Пье Пху Маунг, Малышева Г.В. Моделирование кинетики процесса пропитывания при производстве рефлекторов зеркальных космических	20
антенн из углепластиков Морозов А.С., Кротов А.С., Каськов С.И. Оценка применимости	38
термоэлектрической холодильной машины для термостабилизации фотоприемного устройства дистанционного зондирования Земли	48
Корянов В.В., Нгуен К.Т, Нгуен В.Т. Множественная регрессия для аэродинамической модели беспилотных летательных аппаратов по экспериментальным данным	59
Машиностроение и машиноведение	
Тимофеев Г.А., Тарабарин В.Б. Расчет заклинивания при упоре вершин зубьев колес в волновой передаче	68
Механика	
Цветков С.В., Кулиш Г.Г., Смердов А.А., Барышев А.Н., Тащилов С.В., Магнитский И.В., Пономарёв К.А. Методика и экспериментальные исследования материалов при трехосном растяжении	76
Энергетическое, металлургическое и химическое машиностроение	
Демихов К.Е., Очков А.А. Определение эффективного диапазона давлений газа на стороне всасывания турбомолекулярного вакуумного насоса	89
и регулирования теплоэнергетических установок и тенденции их совершенствования	96
Металлургия и материаловедение	
Базалеева К.О., Цветкова Е.В., Балакирев Э.В. Процессы рекристаллизации аустенитного сплава, полученного методом селективного лазерного плавления	
Захаров Б.М., Буреев И.А. Усовершенствование технологии нанесения теплозащитного покрытия на лопатки турбины	128

CONTENTS

Aviation, Rocket and Space Engineering	
Belonogov O.B. Discharge and Non-Dimensional Parameters of Fluid Flows in Throttles of Spool Hydraulic Valves of Electro Hydraulic Amplifiers	4
Zolotov A.A., Nurullaev E.D. Forecasting the Number of Spacecraft Software Failures	24
Pyi Phyo Maung, Malysheva G.V. Modeling of the Kinetics of Impregnation Process in the Production of Reinforced Carbon-Fiber Reflectors for Space Antennas	38
Morozov A.S., Krotov A.S., Kas'kov S.I. Feasibility Assessment of Thermally Stabilizing the Photodetector for Earth Remote Sensing with Thermoelectrical Cooler	48
Koryanov V.V., Nguen K.T., Nguen V.T. Multiple Regression for UAV Aerodynamic Model based on Experimental Data	59
Mechanical Engineering and Machine Science	
Timofeev G.A., Tarabarin V.B. Calculations of Jamming when Wheel Teeth Tops Stop in the Wave Gear	68
Mechanics	
Tsvetkov S.V., Kulish G.G., Smerdov A.A., Baryshev A.N., Tashchilov S.V., Magnitskiy I.V., Ponomarev K.A. Experimental Research of Materials in Triaxial Tension	76
Power, Metallurgical and Chemical Engineering	
Demikhov K.E., Ochkov A.A. Effective Range of Gas Pressure at the Suction Side of the Turbomolecular Vacuum Pump	89
Markov V.A., Shatrov V.I. Automatic Control Systems for Heat and Power Installations and Ways to Improve Them	96
Metallurgy and Material Science	
Bazaleeva K.O., Tsvetkova E.V., Balakirev E.V. Processes of Recrystallization in Austenitic Alloy Obtained by Methods of Selective Laser Melting	117
Zakharov B.M., Bureev I.A. Improved Technology for Heat-Shielding Coating Application onto Turbine Blades	128

DOI: 10.18698/0236-3941-2016-5-4-23

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ИСТЕЧЕНИЯ И БЕЗРАЗМЕРНЫХ ПАРАМЕТРОВ ТЕЧЕНИЯ ПОТОКОВ ЖИДКОСТИ В ДРОССЕЛЬНЫХ ОКНАХ ЗОЛОТНИКОВЫХ ГИДРОРАСПРЕДЕЛИТЕЛЕЙ С ВРАЩАЮЩИМИСЯ ГИЛЬЗАМИ

О.Б. Белоногов

obelonogoff@mail.ru post@rsce.ru

Ракетно-космическая корпорация «Энергия» имени С.П. Королёва, г. Королёв, Московская обл., Российская Федерация

Аннотация

Приведены результаты экспериментальных исследований параметров потоков жидкости (коэффициента расхода и числа Рейнольдса) в наливных и сливных дроссельных окнах прямоугольной и сегментной форм золотниковых гидрораспределителей электрогидравлических усилителей с вращающимися гильзами. В основу исследований положены п-теорема размерностей Букингема, а также разработанный автором способ определения этих параметров. На экспериментальной установке получены значения давлений в камерах нагнетания, слива и золотникового гидрораспределителя, перемещений золотникового плунжера и расходов жидкости на выходах соответственно рабочей или сливной камер. С помощью компьютерной программы по полученным экспериментальным значениям идентифицированы условные углы истечения и безразмерные параметры течения потоков жидкости. Предложен итерационный метод расчета безразмерных параметров течения потоков жидкости в дроссельных окнах золотниковых гидрораспределителей электрогидравлических усилителей с вращающимися гильзами

Ключевые слова

Электрогидравлический усилитель, золотник, метод идентификации, безразмерный параметр, поток жидкости

Поступила в редакцию 24.06.2015 © МГТУ им. Н.Э. Баумана, 2016

Основной конструктивной особенностью электрогидравлических усилителей (ЭГУ) рулевых машин (РМ) [1] является известное в ракетостроении размещение золотниковых плунжеров в полых вращающихся осях шестеренных насосов РМ [2], исполняющих роль гильз золотниковых гидрораспределителей (ЗГР).

Вследствие этой конструктивной особенности рабочие процессы ЭГУ РМ существенно отличаются от рабочих процессов традиционных гидроприводов, имеющих ЭГУ со стационарными гильзами. Вращение гильз ЗГР в значительной степени влияет на демпфирование золотниковых плунжеров, на гидродинамические силы, действующие на золотниковые плунжеры в процессе функционирования РМ, а также на пропускную способность их дроссельных окон, что приводит к дополнительным потерям энергии потоков [2]. Сходные про-