Ä

УДК 621.311.018(075.8) ББК 31.27я73 Х95

Хрущев Ю.В.

X95

Электромеханические переходные процессы в электроэнергетических системах: учебное пособие / Ю.В. Хрущев, К.И. Заподовников, А.Ю. Юшков; Томский политехнический университет. — Томск: Изд-во Томского политехнического университета, 2012. — 154 с.

ISBN 978-5-4387-0125-5

В пособии изложены наиболее важные положения учебного курса: основные принципы и определения; практические методы анализа статической и динамической устойчивости параллельной работы синхронных электрических машин и нагрузки; средства обеспечения устойчивости. Освещены основы метода малых колебаний, примеры его применения при анализе апериодической и колебательной устойчивости электроэнергетических систем.

Предназначено для студентов, обучающихся по направлению подготовки 140400.62 «Электроэнергетика и электротехника» (квалификация «бакалавр»).

УДК 621.311.018(075.8) ББК 31.27я73

Рецензенты

Доктор технических наук, профессор, заслуженный деятель науки заведующий кафедрой «электроэнергетические системы и электротехника» Новосибирской государственной академии водного транспорта

В.П. Горелов

Заместитель главного инженера Томского предприятия «Магистральные электрические сети», филиала ОАО «ФСК ЕЭС» $A.M.\ Cmapue$

ISBN 978-5-4387-0125-5

- © ФГБОУ ВПО НИ ТПУ, 2012
- © Хрущев Ю.В., Заподовников К.И., Юшков А.Ю., 2012
- © Оформление. Издательство Томского политехнического университета, 2012

Ä

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	6
1. Основные понятия и определения	
2. Основные положения, принимаемые при анализе	
ГЛАВА 1. СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ ЭНЕРГОСИСТЕМ	11
1.1. Уравнение движения ротора генератора	11
1.2. Понятие о статической устойчивости	
1.3. Обобщенные параметры схемы замещения одномашинной	
энергосистемы	21
1.4. Угловые характеристики мощности одномашинной энергосистемы . 1.5. Влияние промежуточных подключений на статическую	24
устойчивость генератора	28
1.5.1. Влияние активной нагрузки	
1.5.2. Влияние шунтирующего реактора	
1.5.3. Влияние конденсаторной батареи	
1.6. Метод малых колебаний для анализа статической устойчивости	
энергосистем	34
1.6.1. Линеаризация уравнений и ее назначение	
1.6.2. Анализ статической устойчивости одномашинной	
энергосистемы	39
1.7. Статическая устойчивость регулируемого генератора	41
1.7.1. Векторные диаграммы нерегулируемого и регулируемого	
генераторов	41
1.7.2. Угловые характеристики регулируемого генератора	44
1.7.3. Упрощенные математические модели регулируемого	
генератора	45
1.8. Понятие о самораскачивании ротора генератора	48
1.8.1. Самораскачивание при наличии большого активного	
сопротивления в статорной цепи	48
1.8.2. Самораскачивание при наличии зоны нечувствительности	
и запаздывания сигналов в системе автоматического	7 0
регулирования возбуждения генератора	50
1.8.3. Самораскачивание при неправильной настройке	52
автоматического регулятора возбуждения	
1.9. Статическая устойчивость двухмашинной энергосистемы	
1.9.2. Уравнения малых колебаний и критерий статической	34
устойчивости	55
1.9.3. Угловые характеристики, пределы мощности и пределы	5
статической устойчивости двухмашинной энергосистемы	58
1.10. Основы практических расчетов статической устойчивости	
сложных энергосистем	60

Ä	

ГЛАВА 2. ДИНАМИЧЕСКАЯ УСТОЙЧИВОСТЬ ЭНЕРГОСИСТЕМ	64
2.1. Понятие о динамической устойчивости	64
2.2. Учет элементов энергосистемы при расчетах динамической	
устойчивости	67
2.2.1. Учет турбин	
2.2.2. Учет синхронных генераторов	68
2.2.3. Учет электрической сети	71
2.2.4. Учет нагрузки	
2.3. Правило площадей и критерий динамической устойчивости	72
2.4. Определение предельного угла отключения поврежденной	
цепи линии электропередачи	76
2.5. Метод последовательных интервалов	78
2.6. Динамическая устойчивость одномашинной энергосистемы	
при полном сбросе мощности	82
2.7. Проверка устойчивости при наличии автоматического	
повторного включения	85
2.8. Процессы при отключении части генераторов	
2.9. Процессы при форсировке возбуждения	89
2.10. Условия успешной синхронизации генератора	93
2.11. Динамическая устойчивость энергосистем с дефицитом мощнос	
2.12. Динамическая устойчивость двухмашинной энергосистемы	100
ГЛАВА 3. СТАТИЧЕСКАЯ УСТОЙЧИВОСТЬ НАГРУЗКИ	105
3.1. Статические характеристики нагрузки	105
3.1.1. Осветительная нагрузка	106
3.1.2. Реактор и батарея статических конденсаторов	107
3.1.3. Синхронный компенсатор	108
3.1.4. Синхронный двигатель	109
3.1.5. Асинхронный двигатель	111
3.1.6. Статические характеристики комплексной нагрузки	
по напряжению	114
3.1.7. Статические характеристики комплексной	
нагрузки по частоте	115
3.1.8. Коэффициенты крутизны и регулирующие	
эффекты нагрузки	116
3.2. Статическая устойчивость асинхронного двигателя	118
3.2.1. Критерий статической устойчивости	118
3.2.2. Предельные по статической устойчивости	
параметры двигателя	119
3.2.3. Влияние внешних условий на статическую	
устойчивость двигателя	121
3.2.4. Вторичный признак (критерий) статической устойчивости	
асинхронного двигателя	123

Ä

		1
•		

3.3. Вторичные признаки (критерии) статической устойчивости комплексной нагрузки	126
3.3.1. Влияние компенсирующих устройств на статическую устойчивость нагрузки	
ГЛАВА 4. ПЕРЕХОДНЫЕ ПРОЦЕССЫ В УЗЛАХ НАГРУЗКИ ЭНЕРГОСИСТЕМ ПРИ БОЛЬШИХ ВОЗМУЩЕНИЯХ	133
4.1. Возмущающие воздействия и большие возмущения	
в узлах нагрузки	133
4.2. Динамические характеристики нагрузки	
4.2.1. Осветительная нагрузка	135
4.2.2. Асинхронный двигатель	
4.2.3. Синхронный двигатель	137
4.3. Динамическая устойчивость синхронного электродвигателя	141
4.4. Условия самозапуска асинхронного электродвигателя	143
4.5. Процессы при пуске двигателей	144
4.5.1. Общая характеристика условий пуска	
4.5.2. Схемы пуска	
4.5.3. Расчет времени пуска	
4.6. Самоотключения электроустановок и восстановление нагрузки	
4.7. Мероприятия по снижению больших возмущений	
СПИСОК ЛИТЕРАТУРЫ	153

. Ä