

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ МЕЖДУНАРОДНЫХ ОТНОШЕНИЙ (УНИВЕРСИТЕТ) МИНИСТЕРСТВА ИНОСТРАННЫХ ДЕЛ РОССИЙСКОЙ ФЕДЕРАЦИИ»

А.А. Симушев, С.М. Зарбалиев, В.В. Григорьев

ВЫСШАЯ МАТЕМАТИКА

Учебное пособие

УДК 51 ББК 22.1я73 С 378

Редактор: Зарбалиев С.М.

Рецензенты:

Артамонов Н.В., канд. физ.-мат. наук, доцент, заведующий кафедрой математики, эконометрики и информационных технологий МГИМО МИД России;

Кравцев С.В., канд. физ.-мат. наук, доцент кафедры математического анализа МГУ им. М.В. Ломоносова.

Симушев А.А.

С Высшая математика: Учебное пособие / А.А. 378 Симушев, С.М. Зарбалиев, В.В. Григорьев. — М.: Прометей, 2022. — 224 с.

ISBN 978-5-00172-357-8

В учебном пособии содержатся наиболее важные раздели математического анализа: введение в анализ, дифференциальное исчисление и интегральное исчисление функций одной переменной. Учебное пособие покрывает основные разделы, входящие в стандарт курса «Математический анализ». Каждая глава делится на параграфы, посвященные отдельным темам. В конце приведён большой список используемой литературы. На протяжении всей книги выдержан строгий научный стиль изложения, все основные теоремы снабжены подробными доказательствами и найден удачный баланс между математической строгостью и доступностью изложения. Все темы проиллюстрированы примерами с подробнейшими решениями. Важной особенностью учебного пособия является то, что в нём разобрано большое количество типовых задач. В основу книги положены лекции, читаемые авторами в МГИМО МИД России и НИУ МЭИ.

Учебное пособие представляет интерес для широкого круга учащихся как на бакалаврских программах, так в магистратуре. Его можно рекомендовать студентам, желающим получить систематические знания по предмету.

Учебное пособие предназначено для подготовки студентов и магистров экономических и технических вузов при изучении ими разделов математического анализа и для самостоятельной проработки соответствующего материала студентами дистанционной формы обучения. Настоящее пособие может быть использовано аспирантами и преподавателями.

Объем рассмотренного материала соответствует программе для высших учебных заведений, рекомендованной Министерством науки и высшего образования РФ.

© Симушев А.А., Зарбалиев С.М., Григорьев В.В., 2022

ISBN 978-5-00172-357-8

© Издательство «Прометей», 2022

ОГЛАВЛЕНИЕ

Оглавление	. 3
Предисловие	. 6
Глава I. Введение в анализ	. 8
§ 1. Некоторые сведения из теории множеств	. 8
1.1. Элементы логической символики	
1.2. Множества. Основные понятия	
1.3. Операции над множествами	
1.4. Основные числовые множества	
1.5. Некоторые свойства действительных чисел	
§2. Числовая последовательность	. 19
2.1. Числовая последовательность. Арифметические	
операции над последовательностями. Ограниченные	
и неограниченные последовательности	
2.2. Предел числовой последовательности	
2.3. Бесконечно малые и бесконечно большие последовательности Их свойства. Теорема о представлении	
2.4. Свойства пределов, связанные с арифметическими	. 20
операциями над последовательностями	27
§3. Предельный переход в неравенствах	
§4. Монотонные последовательности	
4.1. Основные понятия	. 30
4.2. Признак Вейерштрасса	
сходимости монотонной последовательности	
4.3. Бином Ньютона	
4.4. Число <i>e</i>	
4.5. Принцип вложенных отрезков	. 35
§5. Подпоследовательности. Частичные пределы.	
Теорема Больцано-Вейерштрасса	. 36
5.1. Подпоследовательность. Частичный предел	. 36
5.2. Теорема Больцано-Вейерштрасса о существовании	
частичного предела у ограниченной последовательности	. 37
§6. Критерий Коши для сходимости последовательности	. 39
6.1. Фундаментальная последовательность	. 39
6.2. Необходимое и достаточное условие (критерий)	
сходимости последовательности	. 40

§7. Числовые функции	. 41
7.1. Числовые функции и их графики	. 41
7.2. Способы задания функции	
7.3. Арифметические действия над функциями	. 44
7.4. Основные характеристики функций	. 45
§8. Предел функции	. 49
8.1. Два определения предела функции в точке.	
Их эквивалентность	. 49
8.2. Обобщение понятия предела функции в точке.	
Предел функции при $x o \infty$	
8.3. Односторонние пределы функции	. 53
8.4. Свойства пределов функций, связанные с арифметическими	
операциями и предельным переходом в неравенствах	. 55
8.5. Локальная ограниченность функций, имеющих (конечный)	
предел. Критерий Коши существования (конечного) предела	F.C
функции	
§9. Непрерывность функции	
9.1. Понятие непрерывности функции в точке	
9.2. Точки разрыва. Их классификация	
9.3. Локальные свойства непрерывных функций	
9.4. Замечательные пределы	
9.5. Свойства функций, непрерывных на отрезке	. 68
§10. Сравнение функций. Эквивалентные функции.	
Символика $ar{o}$	
10.1. Эквивалентные функции	. 78
10.2. Замена функций эквивалентными при вычислении	
пределов	
10.3. Сравнение функций. Символика $ar{o}$	
10.4. Равномерная непрерывность функции. Теорема Кантора	. 82
Глава II. Дифференциальное исчисление	. 84
§11. Дифференцирование	
11.1. Понятие производной	
11.2. Дифференцируемость функции	
11.3. Правила дифференцирования	
11 4 Произволные и лифференция пы высших порядков	

§12. Применение дифференциального исчисления	
к исследованию функций	. 105
12.1. Основные теоремы дифференциального исчисления	105
12.2. Правило Лопиталя раскрытия неопределённостей	112
12.3. Формула Тейлора	115
12.4. Исследование поведения функция и построение графиков	122
Глава III	. 141
§13. Неопределенный интеграл	141
13.1. Первообразная функции. Неопределенный интеграл	
13.2. Основные свойства неопределенного интеграла	
13.3. Таблица основных неопределенных интегралов	
13.4. Основные методы интегрирования	
13.5. Постановка задачи интегрирования в конечном виде	
§14. Определённый интеграл	. 153
14.1. Определение и условия существования определённого	
интеграла	
14.2. Свойства определённого интеграла	162
14.3. Определённый интеграл с переменным верхним пределом.	400
Вычисление определенных интегралов	
14.4. Приложения определённого интеграла	178
§15. Несобственные интегралы	. 195
15.1. Несобственный интеграл на бесконечном промежутке	
(несобственный интеграл первого рода)	195
15.2. Несобственный интеграл на конечном промежутке	
(несобственный интграл второго рода)	196
15.3. Несобственный интеграл с единственной особой точкой,	
расположенной на конце промежутка интегрирования	198
15.4. Несобственные интегралы от неотрицательных функций.	200
Признаки сравнения несобственных интегралов	202
15.5. Абсолютная и условная сходимость	200
несобственных интегралов	
Приложения	. 212
Литература	222