УДК 658.512.2:004.92 ББК 30.18c515 A13

А13 Компьютерное моделирование в авиакосмической промышленности / под ред. И. Б. Аббасова. – М.: ДМК Пресс, 2020. – 300 с.: ил.

ISBN 978-5-97060-675-9

Эта книга посвящена уникальным разработкам в области компьютерного моделирования авиакосмической техники. В книге описаны оригинальные концептуальные модели самолетов-амфибий, экранопланов, судов на подводных крыльях, начиная от идеи до полного воплощения. Разработанные модели представлены с дизайном пассажирских салонов и фактически готовы к внедрению в авиастроительной промышленности. Оригинальность концепций основывается на биологических прототипах, они эргономичны, многофункциональны и красивы. Представлены аэродинамические компоновки перспективных конвертируемых летательных аппаратов вертикального и укороченного взлета-посадки, сухопутного и корабельного базирования. Описана разработка оригинальной модели беспилотного летательного аппарата, воплощенного в материале, представлены результаты натурных экспериментов. Рассмотрена технология моделирования авиакосмических тренажеров на базе среды виртуальной реальности с устройствами технического зрения.

Книга предназначена для исследователей и разработчиков в области авиакосмической промышленности, для авиаконструкторов и студентов-машиностроителей.

УДК 658.512.2:004.92 ББК 30.18c515

Все права защищены. Любая часть этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами без письменного разрешения владельцев авторских прав.

© Коллектив авторов, 2020

© Оформление, издание, ДМК Пресс, 2020

ISBN 978-5-97060-675-9

Содержание

Предисловие	8
Глава 1. Компьютерное моделирование	
в авиастроении	. 10
Аббасов И.Б.	
1.1. Моделирование летательного аппарата	. 11
1.2. Моделирование ракеты	
1.3. Моделирование обтекаемых поверхностей	. 13
1.4. Моделирование самолета-амфибии Бе-200	. 16
1.5. Концептуальная модель самолета «Chiroptera»	. 20
1.6. Концептуальный дизайн автомобиля «Lotos»	. 27
Список литературы	. 32
Глава 2. Концептуальное моделирование	
самолетов-амфибий	. 35
Аббасов И. Б., Орехов В. В.	
2.1. История гидроавиации	. 37
2.1.1. Из истории мировой гражданской авиации	
2.1.2. Эра гидропланов	
2.1.3. Гидроавиация в России	
2.1.4. Летающие лодки Г. М. Бериева	
2.2. Компьютерное моделирование самолета-амфибии Бе-200	
2.2.1. Основные характеристики	. 51
2.2.2. Метод моделирования	. 52
2.2.3. Этапы моделирования	
2.2.4. Визуализация трехмерной модели	. 58
2.3. Компьютерное моделирование интерьера салона	
самолета-амфибии Бе-200	. 59
2.3.1. Из истории пассажирских самолетов	. 59
2.3.2. Варианты компоновки салона	. 61
2.3.3. Моледирование садона самодета	64

4 • Содержание

2.3.4. Визуализация салона самолета	67
2.3.5. Заключение	
2.4. Компьютерное моделирование самолета-амфибии Бе-10	
2.4.1. Основные характеристики	
2.4.2. Этапы моделирования	
2.4.3. Визуализация трехмерной модели	
2.5. Концептуальная модель самолета-амфибии «Чибис»	1)
(Lapwing)	82
2.5.1. Введение	
2.5.2. Разработка концепции	
2.5.3. Трехмерное моделирование самолета-амфибии	
2.5.4. Тонирование и визуализация	
2.6. Компьютерное моделирование интерьера салона	/ 1
самолета-амфибии «Чибис»	96
2.6.1. Введение	
2.6.2. Концепция самолета-амфибии «Чибис»	
2.6.3. Концепции компоновки	
2.6.4. Разработка пассажирского кресла	
2.6.5. Моделирование интерьера салона	
2.6.6. Присвоение материалов и визуализация сцены	
2.6.7. Удобство и комфорт салона	
2.6.8. Заключение	
2.7. Концептуальная модель и дизайн интерьера	
экраноплана «Водомерка» (Water Strider)	108
2.7.1. Введение	
2.7.2. Обзор экранопланов	
2.7.3. Обзор публикаций	
2.7.4. Концепция экраноплана «Water Strider»	
2.7.5. Компоновка концепции экраноплана	
2.7.6. Этапы моделирования	
2.7.7. Тонирование и визуализация модели	
2.7.8. Разработка интерьера и пассажирского кресла	
2.7.9. Создание материалов и визуализация интерьера	
2.7.10. Заключение	
2.8. Дизайн многофункционального судна на подводных	
крыльях «Афалина»	134
2.8.1. Введение	
2.8.2. Обзор исследований	
2.8.3. Разработка концепции	
2.8.4. Моделирование судна	
2.8.5. Тонирование и визуализация молели	

2.8.6. Заключение	147
2.9. Дизайн автономного мобильного робототехнического	
2.9. Дизайн автономного мобильного робототехнического комплекса	148
2.9.1. Введение	
2.9.2. Обзор публикаций	148
2.9.3. Обзор аналогов	
2.9.4. Конструкция робота	
2.9.5. Концепция моделирования	
2.9.6. Этапы моделирования	153
2.9.7. Создание и присвоение материалов	
2.9.8. Установка освещения и визуализация	
2.9.9. Заключение	158
Список литературы	159
France 7 December 1410 Auto-Constitution 1410 Avenue	
Глава 3. Развитие многовинтовых схем	
конвертопланов с криогенными и гибридными	
силовыми установками	167
Дуров Д. С.	
3.1. Введение	168
3.2. Гидроконвертоплан – новые возможности	
современной авиации	168
3.3. Особенности управления самолетом вертикального	
взлета и посадки на переходном режиме и режиме висения.	174
3.4. Проблемы устойчивости и управляемости	
гидроконвертоплана с тандемно расположенными	
винтами в поворотных кольцевых каналах	179
3.5. Криогенные турбоэлектрические самолеты – хорошее	
решение для гибридных авиакомплексов короткого взлета	
и посадки	182
3.6. Заключение	189
Список литературы	190
F 4 1/	
Глава 4. Концептуальный дизайн	
многофункционального самолета-амфибии	193
Орехов В. В.	
4.1. Введение, исторические этапы	193
4.2. Концепция	
4.3. Трехмерное моделирование	
4 4 Применение материалов визуализация	

4.5. Заключение	
Список литературы	210
Глава 5. Математическая модель беспилотного	
летательного аппарата с эллиптическим крылом	212
·	
Синютин С. А., Горбунов А. А., Горбунова Е. Б.	
5.1. Введение	
5.2. Постановка задачи	
5.3. Методика	
5.4. Аппаратная реализация	
5.5. Программная часть исследований	217
5.6. Исследования поведения беспилотного летательного	
аппарата с эллиптическим крылом	220
5.7. Экспериментальные исследования поведения БПЛА	222
5.8. Обработка и анализ данных, полученных в ходе летных	
испытаний	224
5.9. Формирование математической модели БПЛА	
с эллиптическим крылом	228
5.10. Математическая модель БПЛА в аналитическом виде	229
5.11. Получение математической модели методом «черного	
ящика»	230
5.12. Математическая модель на основе линейной регрессии	233
5.13. Математическая модель на основе многослойного	
персептрона	
5.14. Настройка ПИД-регулятора	237
5.15. Эмулирование полета в целях первичной проверки	
качества регулятора	239
5.16. Заключение	244
Список литературы	245
Глава 6. Технология геометрического моделирования	
динамических объектов и процессов виртуальной	
среды для авиационно-космического	
тренажеростроения	247
• • •	441
Ли В. Г.	
6.1. Введение	248
6.2. Методы прикладной геометрии в решении задач	
имитационного молелипования в SVR	254

Оптимальная дискретизация кривых линий	254
Интегральная модель кривой	259
Методика оценки информативности дискретных	
каркасов кривых	260
Оптимальная дискретизация на основе интегральной	
модели кривой	262
6.3. Цели и задачи внекорабельной деятельности	
космонавта – оператора RTS на ISS в открытом космосе,	
технология компьютерного имитационного моделирования	
в среде виртуальной реальности	267
Задачи внекорабельной деятельности	
космонавта-оператора	267
Технологии методической и программно-аппаратной	
реализации тренажа космонавта-оператора	270
Динамическая виртуальная модель манипулятора	
Программные технологии формирования динамических	
моделей средствами редактора-моделера	279
6.4. Экспериментальные исследования функциональной	
полноты графического и программного обеспечения TMS	281
Информационная и функциональная мощность	
визуализатора TMS	281
Пример тренажа типовой штатной миссии по установке	
солнечной батареи	286
Технология отработки нештатных ситуаций	
Экспериментальный поиск безопасной траектории	
движения ERA	293
6.5. Заключение	
Список литературы	297