Ä

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П.КОРОЛЕВА»

В.С. Асланов, А.В. Дорошин

ДИНАМИКА СИСТЕМЫ СООСНЫХ ТЕЛ

Рекомендовано УМС по математике и механике УМО по классическому университетскому образованию РФ в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлениям и специальностям «Математика», «Прикладная математика и информатика», «Механика»

Самара Издательство СГАУ 2008

• • •

УДК 531.01; 531.36

Рецензенты: д-р физ.-мат. наук, проф. И.П. Завершинский,

д-р физ.-мат. наук, проф. В.И. Астафьев

Асланов В.С.

Динамика системы соосных тел: учебное пособие / В.С. Асланов, А.В. Дорошин. — Самара: Изд-во СГАУ, 2008. — 78 с.

ISBN 978-5-7883-0578-3

Рассматриваются вопросы моделирования и исследования движения системы соосных твердых тел вокруг неподвижной точки. Задача исследования движения соосных тел представляет собой обобщение классической задачи о движении твердого тела вокруг неподвижной точки. Прикладные аспекты исследований связаны с возможностью описания движения космических аппаратов с двойным вращением (спутников-гиростатов) вокруг центра масс.

Изучается свободное движение системы соосных тел и движение в плоском поле тяготения при наличии внутренних моментов между телами. Приводятся аналитические точные и приближенные асимптотические решения для параметров движения системы, в том числе при наличии малой динамической асимметрии. Исследуется устойчивость стационарных режимов движения и дается их кинематическая интерпретация. Материал пособия основывается на результатах, полученных авторами.

Пособие предназначено для студентов естественнонаучных направлений «Механика», «Механика. Прикладная математика» и может использоваться в учебных курсах по динамике систем твердых тел и прикладным задачам динамики твердого тела.

Выполнено на кафедре теоретической механики СГАУ при поддержке РФФИ (№№ 06-08-00325; 06-01-00355) и Программы Президента РФ по поддержке молодых ученых (МК-4707.2006.8).

ISBN 978-5-7883-0578-3

© В.С. Асланов, А.В. Дорошин, 2008 © Самарский государственный

аэрокосмический университет, 2008

ОГЛАВЛЕНИЕ

Введение
1. Уравнения движения системы соосных тел
2. Движение свободной динамически симметричной системы соосных тел 12
2.1. Аналитические решения для параметров движения системы 12
2.2. Устойчивость стационарных вращений
3. Движение системы соосных тел с малой динамической асимметрией 19
3.1. Уравнения движения соосных тел при наличии асимметрии
4. Движение свободной системы соосных тел при наличии внутреннего момента специального вида
4.1. Общая характеристика расположения полодий
4.2. Некоторые сведения из теории эллиптических функций
4.3. Получение аналитических решений
5. Движение тяжелой системы соосных тел
5.1. Получение решений в квадратурах
5.2. Зависимость собственного вращения от внутреннего момента 71
Заключение 74
Библиографический список
Глоссарий

Одной из важных проблем классической механики является проблема исследования движения твердого тела вокруг неподвижной точки. Основополагающие результаты, полученные в рамках этой проблемы, представляют собой классические решения в случаях движения Эйлера, Лагранжа и Ковалевской, а также в частных случаях интегрирования уравнений движения тяжелого твердого тела, например, Гесса-Аппельрота, Горячева-Чаплыгина, Бобылева-Стеклова [8]. Важные результаты получены при исследовании движения твердого тела в ньютоновском (центральном) поле сил, а также при движении тела в жидкости и движении тела с полостями, содержащими жидкость [1, 10, 12, 14].

Естественным обобщением классической задачи о движении твердого тела является переход к исследованию движения систем твердых тел, в том числе соосных тел. Система соосных тел, состоящая из тела-носителя и тел-роторов, вращающихся вокруг неподвижных осей в теле-носителе, рассматривается в работах Н.Е. Жуковского [10], Н.Н. Моисеева, В.В. Румянцева [14, 16, 17], Й. Виттенбурга [6], В.Н. Кошлякова [12], В.В. Стрыгина, В.А. Соболева [18, 19], А.И. Нейштадта, М.Л. Пивоварова [15] и других авторов. В работах [10] и [14] проводятся исследования, связанные с анализом твердых тел, содержащих полости с жидкостью, и показано, что в определенных случаях математические модели движения таких систем аналогичны математическим моделям движения «эквивалентного» твердого тела с присоединенными роторами. В [12] рассматриваются вопросы, связанные с анализом движения разнообразных гироскопических систем, в том числе гиростата. В [4, 9, 13, 15, 18, 19] изучаются вопросы моделирования и исследования разнообразных режимов движения, анализа устойчивости и бифуркационных процессов в динамике пространственного движения соосных космических аппаратов с двойным вращением. В частности, в работе [15] рассмотрено «опрокидывание» продольной оси аппарата при раскручивании тела-ротора, связанное с вероятностными эффектами переходов из одной области фазового пространства системы в другую с проходом через сепаратрису. В работе [6] приводятся основные математические модели движения систем твердых тел, включая гиростаты, методы анализа их движения, а также аналитические решения для параметров движения свободного гиростата (аналог случая Эйлера).

В настоящем пособии рассматриваются вопросы, связанные с разноплановым исследованием динамики движения системы двух соосных тел, включая

свободное движение, движение при действии плоского поля тяготения, а также возмущенное движение системы при наличии малой динамической асимметрии.

Важно отметить, что исследование движения систем соосных тел имеет непосредственное практическое значение в задачах современной механики космического полета, в частности, при анализе углового движения вокруг центра масс соосных космических аппаратов (КА), называемых КА с двойным вращением, и спутников-гиростатов, использующих фундаментальное свойство гироскопов сохранять положение своей оси для стабилизации своего положения в пространстве [4, 9, 13, 15, 18]. Соосная схема позволяет осуществлять гироскопическую стабилизацию КА путем быстрой закрутки только теларотора, при этом тело-носитель может обладать очень малой (в идеале нулевой) угловой скоростью и являться основным отсеком для размещения в нем разного рода аппаратуры. Такую гироскопическую стабилизацию называют частичной закруткой, так как во вращение приводится только часть системы, а именно тело-ротор. Космические аппараты с двойным вращением представляют собой один из важных и весьма распространенных типов аппаратов, которые используются для выполнения разнообразных задач в рамках разноплановых и многоцелевых космических программ, в том числе для решения задач дистанционного зондирования земной поверхности и геоинформатики.

Материал пособия основывается на научных результатах, полученных авторами. Помимо традиционных учебно-методических и дидактических целей, настоящее пособие также направлено на возможную иллюстрацию процесса проведения научного поиска, получения новых научных результатов и формирование у студентов основ культуры креативного мышления.

Пособие предназначено для углубленного изучения вопросов динамики твердого тела и систем твердых тел в рамках подготовки кадров высшей квалификации по естественнонаучным направлениям «Механика», «Механика. Прикладная математика».