Национальный цифровой ресурс Руконт - межотраслевая электронная библиотека (ЭБС) на базе технологии Контекстум (всего произведений: 567163)
Консорциум Контекстум Информационная технология сбора цифрового контента
Уважаемые СТУДЕНТЫ и СОТРУДНИКИ ВУЗов, использующие нашу ЭБС. Рекомендуем использовать новую версию сайта.
Вестник Московского университета. Серия 3. Физика. Астрономия  / №4 2016

О ЛОКАЛИЗАЦИИ СОБСТВЕННЫХ ФУНКЦИЙ ОПЕРАТОРА ЛАПЛАСА В ПРЯМОУГОЛЬНОЙ ОБЛАСТИ (60,00 руб.)

0   0
Первый авторДелицын
Страниц4
ID508775
АннотацияРассмотрена задача о локализации собственных функций оператора Лапласа в области, состоящей из двух прямоугольников, связанных малым отверстием. Доказана локализация собственной функции в одной из подобластей. Оценена скорость сходимости собственного значения исходной задачи к собственному значению подобласти
УДК517.95.
Делицын, А.Л. О ЛОКАЛИЗАЦИИ СОБСТВЕННЫХ ФУНКЦИЙ ОПЕРАТОРА ЛАПЛАСА В ПРЯМОУГОЛЬНОЙ ОБЛАСТИ / А.Л. Делицын // Вестник Московского университета. Серия 3. Физика. Астрономия .— 2016 .— №4 .— С. 28-31 .— URL: https://rucont.ru/efd/508775 (дата обращения: 29.07.2021)

Предпросмотр (выдержки из произведения)

№ 4 О локализации собственных функций оператора Лапласа в прямоугольной области А. Л. Делицын Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра математики. <...> Рассмотрена задача о локализации собственных функций оператора Лапласа в области, состоящей из двух прямоугольников, связанных малым отверстием. <...> Доказана локализация собственной функции в одной из подобластей. <...> Оценена скорость сходимости собственного значения исходной задачи к собственному значению подобласти. <...> Ключевые слова: локализация собственных функций оператора Лапласа, скорость сходимости собственных значений. <...> Введение Задача о локализации собственных функций оператора Лапласа была cформулирована в работе [1]. <...> В этой работе были вычислены собственные функции оператора Лапласа для ряда областей сложной формы и было показано, что собственные функции могут быть весьма малы в некоторых подобластях исходной области. <...> Заметим, что убывание собственных функций оператора Шрёдингера исследовалось в большом количестве работ (см., например, [2–4]). <...> Для оператора Лапласа задача о локализации собственных функций в определенных классах областей рассматривалась в работах [5, 6]. <...> В настоящей работе мы рассматриваем задачу на собственные значения для оператора Лапласа с условиями Дирихле в прямоугольнике, разбитом на два меньших прямоугольника, связанных малым отверстием (рисунок). <...> Получена скорость сходимости основного собственного значения данной задачи к собственному значению задачи в подобласти. где Ω — прямоугольник, разбитый на два прямоугольника Ωa и Ωb , связанных отверстием: Ω={(x, y), (−b<x<a,0<y<1)\Γ} , Γ — объединение двух отрезков, параллельных оси y: x =0, 0y c1 и c2 < y < 1. <...> Наша цель — ||u||2 1  0 ||u||2 0 < x2 < a, стремится к бесконечности при условии, что размер отверстия d =c2 −c1, связывающего два прямоугольника, стремится к нулю. <...> Под локализацией собственной функции в одной из подобластей будем понимать <...>