Национальный цифровой ресурс Руконт - межотраслевая электронная библиотека (ЭБС) на базе технологии Контекстум (всего произведений: 615824)
Контекстум
  Расширенный поиск
661.18

Производство поверхностно-активных веществ (ПАВ), моющих, смачивающих, пенообразующих средств, мыла, глицерина. Производство продуктов бытовой химии и гигиенических средств


← назад
Результаты поиска

Нашлось результатов: 2 (0,21 сек)

Свободный доступ
Ограниченный доступ
Уточняется продление лицензии
1

Адсорбция технических лигносульфонатов на образцах гидратированного оксида алюминия / А.А. Комиссаренков, Р.А. Копнина, А.А. Поздняков // Известия высших учебных заведений. Лесной журнал .— 2015 .— №6 .— URL: https://rucont.ru/efd/341736 (дата обращения: 09.08.2025)

Северный (Арктический) федеральный университет имени М.В. Ломоносова

В работе рассмотрен вопрос взаимодействия технических лигносульфонатов с гидратированным оксидом алюминия и его формой, содержащей аминоэпихлоргидринную смолу Водамин-115. Сорбцию проводили в статических условиях при изменяющихся параметрах проведения реакции (время; рН; концентрация лигносульфонатов; масса сорбента; добавки, способные взаимодействовать с лигносульфонатами с образованием полиэлектролитных комплексов). Процесс сорбции контролировали по изменению значений рН, концентрации лигносульфонатов и ионов алюминия фотометрическим и комплексонометрическим методами. Показано, что лигносульфонаты взаимодействуют с оксидом алюминия и его модифицированными формами при широком варьировании условий сорбции с образованием моно- и полимолекулярных слоев лигносульфонатов на поверхности сорбента. На примере добавок катионного полиэлектролита, способного образовывать полиэлектролитные комплексы с лигносульфонатами, показано увеличение сорбционных свойств оксида алюминия, как и в случае добавки соли алюминия, что указывает на преимущество адсорбции лигносульфонатов в составе комплекса с ионами алюминия. Поверхностный слой осажденного лигносульфоната проницаем для ионов алюминия, образующихся при растворении матрицы сорбента, что обеспечивает условия образования комплекса с алюминием и его дальнейшего осаждения.

диспергаторы, стабилизаторы, смачиватели, поверхностно-активные добавки) [3], а также применяются в качестве альтернативного

2

Межфазная граница «газ – жидкость – твердое тело»: монография

Автор: Макаревич Николай Алексеевич
Северный (Арктический) федеральный университет имени М.В. Ломоносова

Проведено теоретическое обоснование принципиально нового подхода к изучению термодинамики и кинетики реальных межфазных процессов. Рассмотрены уравнения адсорбции и методы расчета дифференциальных теплот адсорбции в рамках теории полимолекулярной адсорбции в различных модельных представлениях для идеальных и реальных (c обобщенным фактором неидеальности) физико-химических процессов, протекающих на межфазной границе. Изучена кинетика и термодинамика межмолекулярных взаимодействий углеводородных, фторированных природных ПАВ в адсорбционном слое. Разработан адсорбционно-термодинамический метод исследования природы поверхностей и апробирован в приложении к гетерогенному твердофазному катализу и катализу в расплавах, к лигнинсодержащим полиэлектролитным системам. Рассмотрено новое направление в теории и практике флотационного обогащения полезных ископаемых.

понятия «активность» a = с, «летучесть» f = *p с коэффициентами активности , фугитивности * [48] и альтернативный

Предпросмотр: Межфазная граница «газ – жидкость – твердое тело» монография.pdf (2,4 Мб)