Изменение пароля
Пользователь
anonymous
Текущий пароль
*
Новый пароль
*
Подтверждение
*
Запомнить меня
Забыли пароль?
Электронная библиотека (16+)
Впервые на сайте?
Вход
/
Регистрация
Национальный цифровой ресурс
Национальный цифровой ресурс Руконт - межотраслевая электронная библиотека (ЭБС) на базе технологии Контекстум (всего произведений: 610373)
Для выхода нажмите Esc или
Алгебра и анализ
/
№1 2017
ENDOMORPHISM RINGS OF REDUCTIONS OF ELLIPTIC CURVES AND ABELIAN VARIETIES (200,00 руб.)
0
0
Первый автор
Zarhin
Страниц
35
200,00р
ID
594325
Аннотация
Let E be an elliptic curve without CM that is defined over a number field A". For all but finitely many non-Archimedean places v of A"" there is a reduction E(v) of E at v that is an elliptic curve over the residue field k(v) at v. The set of u's with ordinary E(v) has density 1 (Serre). For such v the endomorphism ring End(E(v)) of E(v) is an order in an imaginary quadratic field We prove that for any pair of relatively prime positive integers N and M there are infinitely many non-Archimedean places v of A" such that the discriminant A(v) of End(I?(t;)) is divisible by N and the ratio —^ is relatively prime to NM. We also discuss similar questions for reductions of Abelian varieties. The subject of this paper was inspired by an exercise in Serre's 'Abelian ^-adic representations and elliptic curves" and questions of Mihran Pa-pikian and Alina Cojocaru.
Zarhin, Yu.G. ENDOMORPHISM RINGS OF REDUCTIONS OF ELLIPTIC CURVES AND ABELIAN VARIETIES / Yu.G. Zarhin // Алгебра и анализ .— 2017 .— №1 .— С. 112-146 .— URL: https://rucont.ru/efd/594325 (дата обращения: 06.04.2025)
Вы уже смотрели
Пульс планеты: Ближний Восток и Африка №...
83,60 руб
Педагогическая комедия. Записки советско...
190,00 руб
Известия высших учебных заведений. Серия...
190,00 руб
Владислав Мартынов: "Мы предлагаем принц...
80,00 руб
Экзистенциализм?... мимо
190,00 руб
Современная конкуренция / Journal of Mod...
1080,00 руб
Предпросмотр (выдержки из произведения)
Резюме документа
Let E
be
an
elliptic
curve
without
CM
that
is
defined over a number
field
A". <...> For all but finitely many
non-Archimedean
places
v of A"" there
is
a
reduction
E(v) of E at v that
is
an
elliptic
curve
over the
residue
field
k(v) at v. <...> The set of u's with
ordinary
E(v) has density 1 (
Serre
). <...> For such v the
endomorphism
ring
End
(E(v)) of E(v)
is
an order in an
imaginary
quadratic
field
We prove that for any
pair
of relatively
prime
positive
integers
N and M there
are
infinitely many
non-Archimedean
places
v of A" such that the
discriminant
A(v) of
End
(I?(t;))
is
divisible
by N and the ratio —^
is
relatively
prime
to NM. <...> We also
discuss
similar
questions
for
reductions
of
Abelian
varieties
. <...> The subject of this paper
was
inspired
by an exercise in
Serre
's '
Abelian
^-
adic
representations and
elliptic
curves
" and
questions
of
Mihran
Pa-pikian and
Alina
Cojocaru
.! <...>
Облако ключевых слов *
исследования последние
математики известных
математические науки
публикует исследования
труды математики
* - вычисляется автоматически