519.6Вычислительная математика, численный анализ
← назад

Свободный доступ

Ограниченный доступ
Автор: Дьяконов Владимир Павлович
ДМК Пресс: М.
Самоучитель по новейшим реализациям пакета визуального блочного имитационного моделирования Simulink матричной системы MATLAB. Подробно описаны библиотека блоков Simulink, методика подготовки диаграмм моделей, их редактирование, настройка и запуск на исполнение. Дано описание наиболее важных пакетов расширения Simulink инструментального ящика Blockset, в том числе SimPowerSystems, SimMechanics, Aerospace, Stateflow, Signal Processing, Telecommunication, Video and Image Processing и др. Отражены средства виртуальной реальности. Описаны сотни наглядных примеров применения этих средств.
Предпросмотр: Simulink самоучитель.pdf (0,6 Мб)
Автор: Дьяконов В. П.
ДМК Пресс: М.
Самоучитель по новейшим реализациям пакета визуального блочного имитационного моделирования Simulink матричной системы MATLAB. Подробно описаны библиотека блоков Simulink, методика подготовки диаграмм моделей, их редактирование, настройка и запуск на исполнение. Дано описание наиболее важных пакетов расширения Simulink инструментального ящика Blockset, в том числе SimPowerSystems, SimMechanics, Aerospace, Stateflow, Signal Processing, Telecommunication, Video and Image Processing и др. Отражены средства виртуальной реальности. Описаны сотни наглядных примеров применения этих средств.
Предпросмотр: Simulink самоучитель.pdf (0,7 Мб)
Автор: Serdyukova
A detailed investigation of the IVC breakpoint and the breakpoint region width gives important information concerning the peculiarities of stacks with a finite number of intrinsic Josephson junctions. The current-voltage characteristics for a stack of n Josephson junctions is defined from solving the system of n nonlinear differential equations. The current voltage characteristic has the shape of a hysteresis loop. On the back branch of the Hysteresis loop, near the breakpoint Ib, voltage V (I) decreases to zero rapidly. The goal of this work is to accelerate the computation of IVC based on numerical solution of the system. A numericalanalytical method was proposed in. This method showed perfect results in IVC calculations for a stack of 9 and 19 intrinsic Josephson junctions and the computation time reduced by five times approximately. The question of choosing a change-over point from “analytical” to numerical calculation was open. In testing computations the change-over point was taken equal to 2Ib. In the case of periodic boundary conditions an equation, determining the approximate location of Ib, was obtained. This moment we succeeded to develop an algorithm determining the approximate value Ib in more complicated technically case of non-periodic boundary conditions with γ = 1. All calculations were performed using the REDUCE 3.8 system.