•

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА»

Д.Л. ГОЛОВАШКИН, Н.Л. КАЗАНСКИЙ

РАЗНОСТНЫЙ МЕТОД РЕШЕНИЯ УРАВНЕНИЙ МАКСВЕЛЛА

Утверждено Редакционно-издательским советом университета в качестве методических указаний

С А М А Р А Издательство СГАУ 2007

Инновационная образовательная программа "Развитие центра компетенции и подготовка специалистов мирового уровня в области аэрокосмических и геоинформационных технологий"

Рецензенты: д-р физ.-мат. наук, профессор В.В. Ивахник, д-р физ.-мат. наук, профессор И.П. Завершинский

Головашкин Д.Л.

Г61 **Разностный метод решения уравнений Максвелла:** учеб. пособие / Д.Л. Головашкин, Н.Л. Казанский. — Самара: Изд-во Самар. гос. аэрокосм. ун-та, 2007. — 160 с.: 65 ил.

ISBN 978-5-7883-0593-6

В пособии представлены сведения, необходимые для ознакомления с разностным методом решения уравнений Максвелла. В частности, сформулированы явные разностные схемы Yee, способы наложения поглощающих слоев и задания падающей волны. Многочисленные примеры использования метода для решения задач дифракционной оптики иллюстрируют разностный подход к решению уравнений Максвелла.

Настоящее учебное пособие предназначено для студентов, обучающихся по специальности 511600 — «Прикладные математика и физика». Может быть полезно и для студентов смежных специальностей. Разработано на кафедре технической кибернетики.

УДК 535.42 ББК 22.343

ISBN 978-5-7883-0593-6

- © Головашкин Д.Л., Казанский Н.Л., 2007
- © Самарский государственный аэрокосмический университет, 2007

ОГЛАВЛЕНИЕ

Введение	5
1. Разностное решение уравнений Максвелла в задачах микрооптики	9
1.1. Уравнения Максвелла в дифракционной микрооптике	9
1.1.1. Уравнения Максвелла	10
1.1.2. Граничные условия	13
1.1.3. Начальные условия	20
1.2. Разностные схемы для уравнений Максвелла	21
1.2.1. Одномерный случай	22
1.2.2. Двумерный случай	26
1.3. Переход к комплексной амплитуде	33
1.4. Наложение поглощающих слоев	36
1.4.1. Постановка поглощающих граничных условий и наложение	
поглощающих слоев	. 37
1.4.2. Разностная аппроксимация уравнений Максвелла	
в поглощающих слоях	41
1.4.3. Объединение поглощающих слоев при векторизации	
вычислений	
1.4.4. Универсальные сеточные области	
1.5. Формирование падающей волны	
1.5.1. Метод «жесткого» источника	
1.5.2. Метод результирующего поля	
1.5.3. Метод разделенного поля	
1.5.3.1. Одномерный случай	
1.5.3.2. Двумерный случай	
1.5.4. Сравнение методов формирования падающей волны	
2. Распространение электромагнитного излучения через субволновые	
дифракционные решетки на торце оптического волновода	
2.1. Тестирование модели, основанной на разностном решении уравнений	
Максвелла, на примере субволновых дифракционных решеток	
2.1.1. Дифракция Н-волны на идеально проводящих решетках	
2.1.2. Дифракция H -волны на диэлектрической бинарной решетке	
2.1.3. Дифракция Н-волны на алмазной антиотражающей	
периодической структуре	. 84
2.2. Исследование бинарной дифракционной решетки на торце	
галогенидного ИК-волновода	
2.2.1. Влияние недотрава, перетрава и клина травления	
2.2.2. Впияние прогиба решетки	94