ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ПОСТРОЕНИЕ И АНАЛИЗ АЭРОЛОГИЧЕСКОЙ ДИАГРАММЫ

Учебно-методическое пособие

Составитель Л.М. Акимов

Издательско-полиграфический центр Воронежского государственного университета 2010

• • •

СОДЕРЖАНИЕ

Вв	ведение	4
1.	Назначение и содержание аэрологической диаграммы	5
2.	Построение и анализ аэрологической диаграммы	
3.	Определение относительной влажности воздуха с помощью	
но	мограммы	8
4.	Составление аэрологической диаграммы	8
	4.1. Нанесение данных о температуре и построение кривой	
	стратификации (кривой температуры)	8
	4.2. Нанесение данных о дефиците точки росы и построение	
	кривой точки росы	9
	4.3. Нанесение данных о ветре	9
	4.4. Нанесение данных в особых точках	
5.	Расчетно-графические построения	10
	5.1. Определение уровня конденсации	10
	5.2. Построение кривой состояния	11
	5.3. Отображение энергии неустойчивости	11
	5.4. Определение уровня конвекции	13
	5.5. Выделение слоев инверсии и изотермии	14
	5.6. Выделение тропопаузы	16
	5.7. Выделение изотерм	17
6.	Анализ аэрологической диаграммы	17
	6.1. Потенциальная температура	17
	6.2. Анализ стратификации атмосферы	18
	6.3. Выявление слоев облачности	19
	6.4. Выделение слоя положительного отклонения от СА	
	(стандартной атмосферы)	20
	6.5. Построение кривой температуры насыщения воздуха	
 5. Ko 	относительно льда. Определение слоев обледенения	20
	6.6. Определение слоев динамической болтанки	
	6.7. Определение максимальной температуры воздуха	
	Экспресс-анализ аэрологической диаграммы	
Ко	онтрольные вопросы	30
C_{Π}	исок питературы	30

- 1. Абсцисса температура воздуха в °С. В левой части дана отдельная шкала для нанесения разности между температурой и точки росы по высотам.
- 2. Ордината атмосферное давление в логарифмической шкале $(\rho^{0,286})$.
- 3. Столбец в левой части бланка без вертикальных линий предназначен для нанесения ветра по высотам.
- 4. Прямые наклонные зеленые линии сухие адиабаты (линии равной потенциальной температуры).
- 5. Сплошные красные изогнутые линии влажные адиабаты (линии равной псевдопотенциальной температуры).
- 6. Красные пунктирные линии, проходящие с небольшим наклоном, линии равной удельной влажности для насыщения над водой (также и при отрицательных температурах) в г/кг.
- 7. Цифры над изобарой 500 мб дают поправку в градусах для перехода от точки росы для насыщения надо льдом. Поправки даны для температур кратных 5 °C и могут применяться для любого уровня.
- 8. Числа около точек расстояния в декаметрах между основными изобарическими поверхностями (1000–850; 850–700; 500–300; 3000–200; 200–100) при данной средней температуре слоя.
- 9. Расстояния между наклонными штрихами на изобарах 1000, 900, 800, 700, 600 и 500 мб дают величину поправки для перехода от действительной температуры к виртуальной при насыщенном воздухе.

Исходными данными для анализа состояния атмосферы на различных высотах являются результаты ее комплексного зондирования, отнесенные к конкретному месту (пункту) и моменту времени (сроку зондирования), представленные в коде КН-04.

В правом верхнем углу аэрологической диаграммы (АД) помещена номограмма, дающая зависимость между температурой (кривые линии), относительной влажностью (вертикальная шкала) и разностью меду температурой и точки росы (горизонтальная шкала) (рис. 2).

Ä

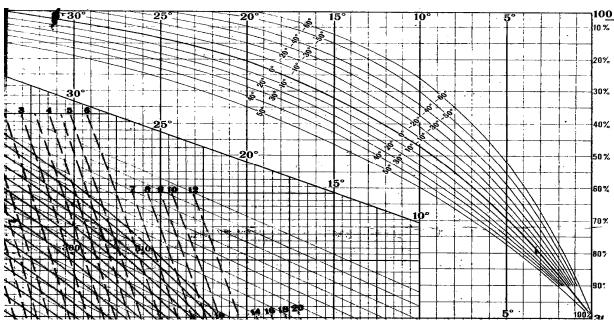


Рис. 2. Номограмма для определения влажности воздуха

На бланке АД под номограммой для определения относительной влажности строится таблица, в которую заносятся данные, закодированные с помощью КН-04. В таблицу заносятся данные по температуре, влажности, направлению и скорости ветра на высотах стандартных изобарических поверхностей и на уровнях особых точек.

На аэрологической диаграмме строятся: кривая стратификации температуры, кривая точек росы (*депеграмма*), кривая состояния, кривая насыщения надо льдом, вертикальное распределение направления и скорости ветра.

2. ПОСТРОЕНИЕ И АНАЛИЗ АЭРОЛОГИЧЕСКОЙ ДИАГРАММЫ

Данные температурно–ветрового зондирования раскодировать по коду КН-04.

Результаты раскодирования можно представить на отдельном листе в виде табл. 1.

Таблица 1 Результаты температурно-ветрового зондирования

Н	P	t	D	$t_{\rm d}$	Тн.л.	dd	ff	f	γ
1	2	3	4	5	6	7	8	9	10
		тем	дефицит °C	тем-	тем-ра				
				pa	насыще-			ОТН.	
Высо-	Давление,			точ-	ния	направле-	скорость	влаж	градиент
та, км	гПа	-pa °C		ки	относи-	ние ветра	ветра	ность	°С/100м
				росы	тель-но			%	
				°C	льда				

Температуру точки росы t_d (графа 5) рассчитать по формуле:

$$T_d = T - D. (1)$$

Рассчитать вертикальный барический градиент γ (графа 10) по формуле:

$$\gamma = \Delta T / \Delta H = (T_{n+1} - T_n) / (H_{n+1} - H_n), \tag{2}$$

где T_n и H_n — температура и высота n-го уровня; T_{n+1} и H_{n+1} — температура и высота вышележащего уровня соответственно.

3. ОПРЕДЕЛЕНИЕ ОТНОСИТЕЛЬНОЙ ВЛАЖНОСТИ ВОЗДУХА С ПОМОЩЬЮ НОМОГРАММЫ

Входами в номограмму (рис. 2) являются значения дефицита точки росы (горизонтальная шкала) и температуры воздуха (семейство кривых линий). Значение относительной влажности в процентах определяется по вертикальной шкале номограммы.

Полученные результаты занести в табл. 1.

Значения относительной влажности (f) с точностью до одного процента нанести **цифрами черного цвета** на соответствующих уровнях слева от кривой точки росы.

Относительную влажность можно также определить с помощью психометрической таблицы.

4. СОСТАВЛЕНИЕ АЭРОЛОГИЧЕСКОЙ ДИАГРАММЫ

Составление аэрологической диаграммы производится в следующем порядке: сначала наносятся данные о температуре воздуха (кривая стратификации), дефиците точки росы (депеграмма), направлении и скорости ветра у поверхности земли и на стандартных изобарических поверхностях.

4.1. Нанесение данных о температуре и построение кривой стратификации (кривой температуры)

Для этого на бланке аэрологической диаграммы находят изобару (горизонтальную линию), которая соответствует давлению в наносимой точке подъема. Затем, перемещаясь вдоль этой изобары, находят ее пересечение с изотермой, соответствующей температуре воздуха в той же точке подъема; на пересечении изобары и изотермы ставят точку и рядом (справа) указывают высоту точки подъема в целых и десятых долях километра без указания размерности.