Ä

УДК 539.3(075) ББК 30.121 A23

Рецензенты:

доктор технических наук, профессор В.Н. Иванов, профессор кафедры прочности материалов и конструкций РУДН;

доктор технических наук *Л.Л. Сотников*, директор филиала НИУ МГСУ в г. Люберцы, заведующий кафедрой промышленного и гражданского строительства; доктор технических наук, профессор *Г.М. Муртазалиев*, заведующий кафедрой

октор технических наук, профессор Г.М. Муртазалиев, заведующий кафедрой сопротивления материалов, теоретической и строительной механики Дагестанского государственного технического университета

Агапов, Владимир Павлович.

А23 Сопротивление материалов [Электронный ресурс] : учебник / В.П. Агапов ; М-во образования и науки Рос. Федерации, Моск. гос. строит. ун-т.— 2-е изд. (эл.). — Электрон. текстовые дан. (1 файл pdf : 337 с.). — Москва : Издательство МИСИ—МГСУ, 2017 — Систем. требования: Adobe Reader XI либо Adobe Digital Editions 4.5 ; экран 10".

ISBN 978-5-7264-1624-3

Изложены основы расчетных и экспериментальных методов исследования напряженно-деформированного состояния элементов конструкций при растяжении — сжатии, кручении, изгибе и комбинированном нагружении. Содержатся сведения о расчетах стержней на устойчивость. Рассмотрены поведение стержней при действии динамических нагрузок. Приведены сведения о современных методах расчета стержней и стержневых систем на прочность.

Теоретический материал проиллюстрирован примерами расчета стерж ней при различных воздействиях.

Для обучающихся по программе специалитета по специальности 08.05.01 «Строительство уникальных зданий и сооружений».

УДК 539.3 (075) ББК 30.121

Деривативное электронное издание на основе печатного издания: Сопротивление материалов: учебник / В.П. Агапов; М-во образования и науки Рос. Федерации, Моск. гос. строит. ун-т. — Москва: Издательство МИСИ— МГСУ, 2014. — 336 с. — ISBN 978-5-7264-0805-7.

В соответствии со ст. 1299 и 1301 ГК РФ при устранении ограничений, установленных техническими средствами защиты авторских прав, правообладатель вправе требовать от нарушителя возмещения убытков или выплаты компенсации.

ISBN 978-5-7264-1624-3

© ФГБОУ ВПО «МГСУ», 2014

ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ		
1. BBE	дение	5
	Предмет изучения, задачи и методы сопротивления материалов Схематизация конструкции. Реальный объект и расчетная схема	
	Внешние силы	o
	Перемещения и деформации	12
	Внутренние усилия и напряжения. Метод сечений	14
	Связь между внутренними силовыми факторами и напряжениями для стержней	16
1.7.	Основные допущения и гипотезы, принятые в сопротивлении материалов_	17
2. PAC	ТЯЖЕНИЕ И СЖАТИЕ	19
2.1.	Внутренние силы при растяжении и сжатии	19
2.2.	Напряжения при растяжении и сжатии	24
2.3.	Удлинение стержня и закон Гука	<u>3</u> 0
	Осевые перемещения	32
	Потенциальная энергия деформации	<u>3</u> 6
	Статически определимые и статически неопределимые системы Напряженное и деформированное состояния	38
	при растяжении — сжатии	44
	Испытание материалов на растяжение и сжатие	47
	Основные механические характеристики материалов	50
2.10	. Расчеты на прочность	51
3. СДВИГ		
3.1.	Чистый сдвиг и его особенности	53
3.2.	Потенциальная энергия при чистом сдвиге	55
3.3.	Расчет заклепочных и болтовых соединений	56
3.4.	Расчет сварных соединений	<u> </u>
4. KP	УЧЕНИЕ СТЕРЖНЕЙ	61
	Определение внутренних усилий. Эпюры крутящих моментов Определение напряжений в стержне круглого поперечного сечения	61
	при кручении	63
4.3.	Кручение бруса прямоугольного сечения	68
	Расчеты на прочность и жесткость при кручении	70
	Напряжения и деформации в винтовых пружинах с малым шагом витка _	76
4.6.	Кручение тонкостенного бруса	<u>8</u> 0
	4.6.1. Приближенный метод расчета стержней открытого профиля 4.6.2. Общая теория кручения тонкостенных стержней	_ 80
	открытого профиля	83
	4.6.3. Стержни замкнутого профиля	99

Ä

Ä

5.		МЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОПЕРЕЧНЫХ ЕНИЙ БРУСА	102
	5 1	Статические моменты сечений	102
	5.1.	Моменты инерции сечений	$\frac{10^{2}}{10^{4}}$
		Зависимость между моментами инерции при повороте осей	105
		Главные оси и главные моменты инерции	106
		Примеры определения моментов инерции простых сечений_	109
		Пример определения моментов инерции составных сечений	111
6.		ИБ	 114
	6.1.	Внутренние силовые факторы при изгибе.	
		Эпюры изгибающих моментов и поперечных сил	114
	6.2.	Дифференциальные зависимости между интенсивностью	
		распределенной нагрузки, поперечной силой и изгибающим моментом	_120
	6.3.	Эпюры M и Q при сложном нагружении	121
		Напряжения в балке при чистом изгибе	125
	6.5.	Деформация балки	128
	6.6.	Потенциальная энергия при изгибе	130
	6.7.	Касательные напряжения при изгибе	130
	6.8.	Расчеты на прочность при изгибе	133
	6.9.	Главные напряжения при поперечном изгибе	134
	6.10	. Дифференциальное уравнение упругой линии балки	137
	6.11.	. Определение перемещений балки по формуле Мора	143
		6.11.1.Теорема о взаимности работ	143
		6.11.2.Теорема о взаимности перемещений	144
		6.11.3.Вывод формулы Мора для балки	145
		6.11.4.Способ Верещагина	147
		6.11.5.Вычисление интеграла Мора методом Симпсона	148
	6.12	. Изгиб тонкостенных балок	149
	6.13	. Изгиб бруса большой кривизны	153
		6.13.1.Общие понятия	153
		6.13.2.Вычисление внутренних усилий	154
		6.13.3.Вычисление радиуса кривизны нейтрального слоя	
		для прямоугольного сечения	158
	6.14	. Косой изгиб	158
		. Внецентренное растяжение или сжатие	162
7.	ТОЛ	СТОСТЕННЫЕ ТРУБЫ И СОСТАВНЫЕ ЦИЛИНДРЫ	<u>1</u> 67
	7 1	Основные соотношения	167
		Частные случаи нагружения толстостенного цилиндра	171
	7.2.	7.2.1. Нагружение внутренним давлением	171
		7.2.2. Нагружение внешним давлением	172
	7.3	Определение напряжений в составных трубах	$\frac{172}{173}$
8		DWITED IE CHCLEM I	177
٠.			178
	0.1.	Определение усилий в стержнях ферм	170

· Ä
вление материалов
ентах пространственных рам _
их системах по формуле Мора _
е системы
м метопом сип

		Определение внутренних усилий в элементах пространственных рам	181
		Определение перемещений в стержневых системах по формуле Мора Статически неопределимые стержневые системы	183 190
	8.6.	Расчет статически неопределимых систем методом сил.	
		Канонические уравнения метода сил	193
	8.7.	Примеры расчета статически неопределимых систем методом сил	195
9.	KPA	ТКИЕ СВЕДЕНИЯ ИЗ ТЕОРИИ УПРУГОСТИ	<u>2</u> 05
	9.1.	Основные гипотезы механики деформируемого тела	
		и классической теории упругости	<u>20</u> 5
	9.2.	Принцип Сен-Венана	206
	9.3.	Теория напряжений	206
		9.3.1. Напряжения на наклонных площадках	<u>208</u>
		9.3.2. Понятие о тензоре напряжений	<u>209</u> 210
		9.3.3. Главные напряжения и главные площадки	$\frac{210}{211}$
		9.3.5. Плоское напряженное состояние	212
		9.3.6. Наибольшие касательные напряжения	215
		9.3.7. Примеры анализа напряжений при плоском напряженном	
		состоянии	216
		9.3.8. Круг Мора	217
		9.3.9. Круги Мора при объемном напряженном состоянии	223
	9.4.	Теория деформаций	224
	9.5.	Обобщенный закон Гука	227
	9.6.	Потенциальная энергия	228
10). KPI	ИТЕРИИ ПЛАСТИЧНОСТИ И РАЗРУШЕНИЯ	<u>2</u> 31
	10.1	. Понятие о теориях прочности	231
	10.2	Теории хрупкого разрушения	<u>23</u> 1
	10.3	. Теории вязкого разрушения	<u>23</u> 2
	10.4	·. Теория прочности Мора	235
	10.5	. Использование теорий прочности для расчета стержней	238
11	. TOI	КОСТЕННЫЕ ОБОЛОЧКИ	<u>24</u> 5
	11.1	. Определение напряжений в оболочках вращения	<u>2</u> 45
	11.2	. Примеры определения напряжений в тонкостенных сосудах	248
12	2. ПРО	ОЧНОСТЬ ПРИ ЦИКЛИЧЕСКИ ИЗМЕНЯЮЩИХСЯ	
	HAl	ТРЯЖЕНИЯХ	251
	12.1	. Понятие об усталостной прочности	<u>25</u> 1
	12.2	Циклические напряжения	252
		. Составление условия прочности при переменных напряжениях	253
		. Определение предела выносливости при симметричном цикле	254
		. Предел выносливости при несимметричном цикле	<u>2</u> 55
		. Влияние концентрации напряжений на усталостную прочность	
	12.7	. Масштабный эффект	258
	12.8	. Качество обработки поверхности	<u>25</u> 8

А		
		335

Оглавление

12.9. Определение коэффициента запаса усталостной прочности	259
12.10. Усталостная прочность в нестационарном режиме	<u>2</u> 61
13. УСТОЙЧИВОСТЬ РАВНОВЕСИЯ ДЕФОРМИРУЕМЫХ СИСТЕМ	264
13.1. Определение критических сил для сжатого стержня	<u>2</u> 64
13.2. Зависимость критической силы от условий закрепления	266
концов стержня	266
13.3. Устойчивость стержней при наличии пластических деформаций	267
13.4. Устойчивость плоской формы изгиба	<u>27</u> 2
13.3. Определение критических нагрузок в сложных случаях нагружения стержней	274
13.6. Продольно-поперечный изгиб	281
14. ДИНАМИКА	286
14.1. Основные понятия	286
14.2. Системы с одной степенью свободы	287
14.3. Собственные колебания без учета сил сопротивления	288
14.4. Собственные колебания с учетом сил сопротивления	290
14.5. Действие вибрационной силы на систему с одной степенью свободы	
14.6. Системы с несколькими степенями свободы. Свободные колебания	295
14.7. Примеры расчета на собственные колебания	296
14.8. Действие ударной нагрузки на систему с одной степенью свободы	299
15. БАЛКИ НА УПРУГОМ ОСНОВАНИИ	<u>30</u> 2
15.1. Основные понятия	302
15.2. Модель основания Винклера	302
15.3. Дифференциальное уравнение изогнутой оси балки на упругом	
винклеровом основании	303
15.4. Расчет длинных балок. Краевой эффект	305
15.5. Короткие балки на упругом основании	310
16. РАСЧЕТ БАЛОК МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ	<u>3</u> 13
16.1. Идея метода конечных элементов	313
16.2. Матрица жесткости плоской балки	317
16.3. Примеры расчета стержневых конструкций методом	
конечных элементов по программе ПРИНС	322
Библиографический список	326
Приложение. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОКАТНЫХ	
ПРОФИЛЕЙ	327