Ä

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Северный (Арктический) федеральный университет имени М.В. Ломоносова»

П.П. Тиранов

БУРОВЫЕ ТЕХНОЛОГИЧЕСКИЕ ЖИДКОСТИ

Учебное пособие

Архангельск САФУ 2017

Ä

УДК 622.244.442.063 (075.80) ББК 33.131 Т44

Рекомендовано к изданию учебно-методическим советом Северного (Арктического) федерального университета имени М.В. Ломоносова

Рецензенты:

- **М.В. Грибанов**, начальник отдела бурения и ремонта скважин ООО «Компания «Полярное Сияние», канд. техн. наук;
- **Г.М. Тарасова**, директор Инновационно-технологического центра арктических нефтегазовых лабораторных исследований САФУ

Тиранов, П.П.

Т44 Буровые технологические жидкости: учебное пособие / П.П. Тиранов; Сев. (Арктич.) федер. ун-т им. М.В. Ломоносова. – Архангельск: САФУ, 2017. – 199 с.

ISBN 978-5-261-01276-4

Рассмотрены буровые технологические жидкости как дисперсные системы, их функции, классификация, требования к ним. Подробно рассмотрены минералогия и структура различных глинистых минералов, состояние глины в буровых растворах, виды утяжелителей, реология и фильтрация буровых растворов, материалы и химические реагенты для их регулирования, различные методы испытания растворов. Описаны способы приготовления, обработки, очистки от выбуренной породы и дегазации промывочных жидкостей.

Приведен порядок выполнения курсового проекта по дисциплине «Буровые технологические жидкости». Даны рекомендации по проектированию технологического регламента промывочных жидкостей для бурения скважины в сложных геологических условиях.

Предназначено для студентов, обучающихся по направлениям 21.03.01 «Нефтегазовое дело», 15.03.02 «Технологические машины и оборудование», а также может быть использовано студентами других направлений и слушателями ФПК и УТЦ.

УДК 622.244.442.063 (075.80) ББК 33.131

ISBN 978-5-261-01276-4

- © Тиранов П.П., 2017
- © Северный (Арктический) федеральный университет имени М.В. Ломоносова, 2017

ВВЕДЕНИЕ

В ближайшие годы в области строительства скважин наиболее перспективными направлениями будут новые технологии вскрытия продуктивных горизонтов, расширение применения электробуров и винтовых забойных двигателей, возрастет объем бурения скважин с горизонтальным и многозабойным окончанием и др.

Для эффективного решения проблемы качественного и эффективного бурения горизонтальных (ГС) и разветвленно горизонтальных (РГС) скважин прежде всего необходимо обратить внимание на такие направления, как исследование гидродинамики пласта нефтяных и газовых залежей различных типов с целью создания оптимальных систем разработки нефтяных и газовых месторождений; исследование напряженного состояния горных пород, вскрываемых этими скважинами, и механики формирования ствола породоразрушающими инструментами различных типов; разработка системы оптимального управления траекторией глубоких ГС и РГС для различных геологических условий и способов бурения; разработка эффективной технологии бурения, вскрытия пластов и крепления ГС и РГС; разработка специальных и тампонажных растворов с учетом гидродинамических особенностей их работы в этих условиях; создание эффективных технических средств (отклоняющих, стабилизирующих, ориентирующих и измерительных) для бурения ГС и РГС. В настоящее время предложено и опробовано много разработок, основанных на существующей технике, разработана отечественная технология строительства таких скважин, но проблемы тем не менее остаются.

Достижения технологии горизонтального бурения сделали возможным разбуривание шельфовых месторождений нефти и газа с берега, без строительства дорогостоящих морских оснований и платформ. Вместе с тем необходимыми техническими и технологическими элементами такого бурения являются верхний привод, алюминиевые бурильные трубы, системы измерений в процессе бурения, алмазные и поликристаллические долота, гидравлические забойные двигатели с долговечностью 150–300 ч. Использование

этих элементов в горизонтальном бурении отдельно или в различных комбинациях способно совершить революционные преобразования в технологии разработки коллектора многоствольными скважинами.

Дисциплина «Буровые технологические жидкости» является одной из основных в структуре подготовки дипломированного специалиста по профилю «Бурение нефтяных и газовых скважин». При ее изучении осваиваются основы разработки гидравлической программы промывки скважины, выбора и обоснования составов промывочных жидкостей для бурения скважин в конкретных геологических условиях. Данная дисциплина находится в тесной взаимосвязи с такими смежными дисциплинами, как «Технология бурения нефтяных и газовых скважин», «Закачивание скважин», поскольку многие вопросы неизбежно переходят из одной дисциплины в другую. При этом остается единой конечная цель – подготовка высококвалифицированного специалиста-буровика.

Программой дисциплины предусматриваются лекционные, практические и лабораторные занятия, обучение на тренажерах и закрепление теоретических знаний на рабочем месте в период производственной практики. Важная роль в подготовке бакалавра отводится курсовому проекту по данной дисциплине, который призван активизировать творческие возможности студента, научить его анализировать промысловый материал, сопоставлять с лучшими аналогами и предлагать новые оригинальные решения.

Задание на курсовой проект выдается студентам перед выездом на производственную практику.

Курсовой проект может быть выполнен по одной из перечисленных тем:

- 1. Проектирование технологического регламента промывочных жидкостей для бурения скважины в конкретных геологических условиях.
- 2. Экспериментальная разработка оптимальной рецептуры промывочной жидкости для конкретных геологических условий.
- 3. Экспериментальная исследовательская работа в области буровых промывочных жидкостей (УИРС).
- 4. Составление литературного обзора по одной из проблем технологии буровых промывочных жидкостей (УИРС).

Ä

Основной темой курсового проекта является проектирование технологического регламента промывочных жидкостей. Остальные темы могут быть предоставлены наиболее подготовленным студентам, проявляющим склонность к исследовательской работе.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	
1. БУРОВЫЕ ПРОМЫВОЧНЫЕ ЖИДКОСТИ КАК ДИСПЕРС-	
НЫЕ СИСТЕМЫ	
1.1. Технологические функции промывочных жидкостей	
1.2. Требования, предъявляемые к промывочным жидкостям	
1.3. Понятие о промывочных жидкостях как гомогенных и гете-	
рогенных дисперсных системах	
1.4. Классификация промывочных жидкостей	1
2. ПРОМЫВОЧНЫЕ ЖИДКОСТИ С ВОДНОЙ ДИСПЕРСИОН-	
НОЙ СРЕДОЙ	1
2.1. Безглинистые и малоглинистые промывочные жидкости	1
2.2. Глинистые растворы и их компонентный состав	1
2.3. Минералогия глины	1
2.3.1. Октаэдрический слой	2
2.3.2. Тетраэдрический слой	2
2.3.3. Структуры глинистых минералов	2
2.3.4. Заряды на поверхности глин	2
2.4. Глинистые минералы	2
2.4.1. Смектит	2
2.4.2. Каолинит	2
2.4.3. Миса	2
2.4.4. Хлорит	3
2.4.5. Аттапульгит и сепиолит	3
2.5. Глина в буровых растворах	3
2.5.1. Силы между частицами	3
2.5.2. Взаимодействие между глинистыми частицами	3
2.6. Бентонит	3
2.7. Гидрофильность и набухание глин	3
2.7.1. Размеры и форма глинистых частиц	3
2.7.2. Требования к качеству материалов для приготовления	
глинистых растворов	3
3. БУРОВЫЕ РАСТВОРЫ НА ВОДНОЙ ОСНОВЕ	4
3.1. Растворы на пресной воде	4
3.2. Растропи на морской роле	1

3.3. Ингибированные растворы	42
3.3.1 Гипс	43
3.3.2. Известь	43
3.3.3. Хлорид калия	44
3.3.4. Морская вода – лигносульфонат	44
3.3.5. Хлорид натрия	45
3.3.6. Полисолевая система	45
3.3.7. Спиртовые системы	45
3.4. Реология и фильтрация буровых растворов	46
3.4.1. Реология буровых растворов	46
3.4.2. Фильтрация буровых растворов	57
3.5. Материалы для регулирования вязкости и фильтрации	62
3.5.1. Полимеры	62
3.5.2. Крахмал	63
3.5.3. Целлюлоза и её производные	64
3.5.4. Понизители вязкости	67
3.6. Утяжелители	69
3.6.1. Барит	69
3.6.2. Другие утяжелители	70
3.7. Аэрированные глинистые растворы	72
3.8. Пены	73
4. БУРОВЫЕ РАСТВОРЫ НА НЕФТЯНОЙ ОСНОВЕ	75
4.1. Обращенные эмульсионные буровые растворы	75
4.1.1. Механизм ингибирования	75
4.1.2. Состав обращенного эмульсионного бурового раствора	76
4.2. Эмульсии	77
4.3. Другие добавки	79
4.3.1. Известь (Ca(OH) ₂)	79
4.3.2. Добавки для увеличения вязкости	79
4.3.3. Добавки для снижения фильтрации	80
4.3.4. Утяжелители	80
4.4. Преимущества и недостатки использования буровых рас-	
творов на нефтяной основе	80
130p02 1.w 1.0p / / / / / / / / / / / / / / / / / / /	
5. ВЫБОР СОСТАВА БУРОВОГО РАСТВОРА И СМЕСЕЙ РАЗ-	
ЛИЧНОГО НАЗНАЧЕНИЯ	81
5.1. Выбор состава бурового раствора	81
5.2 Пачки и закупоривающие материалы	82
5.2.1. Прихват бурильной колонны	82
5.2.2. Потеря циркуляции	83
3.2.2. Потеря циркуляции	ο.

6 . ПРИГОТОВЛЕНИЕ, ОЧИСТКА И ДЕГАЗАЦИЯ БУРОВЫХ РАСТВОРОВ	
6.1. Способы приготовления промывочных жидкостей	
6.2. Очистка буровых растворов от шлама	
6.3. Дегазация буровых растворов	
6.3.1. Механический способ дегазации	
6.3.2. Физико-химический способ дегазации	
6.3.3. Вакуумная дегазация	
6.4. Испытание буровых растворов	
6.4.1. Физические испытания	
6.4.2 Химические анализы буровых растворов на водной	
основе	
основе	
7. РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ КУРСОВОГО ПРО-	
ЕКТА НА ТЕМУ «ПРОЕКТИРОВАНИЕ ТЕХНОЛОГИЧЕСКОГО	
РЕГЛАМЕНТА ПРОМЫВОЧНЫХ ЖИДКОСТЕЙ ДЛЯ БУРЕНИЯ	
СКВАЖИНЫ В КОНКРЕТНЫХ ГЕОЛОГИЧЕСКИХ УСЛОВИ-	
XX»	
7.1. Введение	
7.2. Характеристика проектной скважины	
7.3. Характеристика проектной скважины	
7.4. Анализ горно-геологических условий бурения	
7.5. Обоснование расчленения геологического разреза на интер-	
валы с несовместимыми или существенно различными требова-	
ниями к промывочной жидкости	
7.5.1. Расчленение геологического разреза на технологиче-	
ские интервалы	
7.5.2. Расчленение по литологическому составу пород	
7.5.2. Тасчленение по литологическому составу пород 7.5.3. Требования к промывочным жидкостям при бурении	
пород различных категорий	
7.5.4. Уточнение расчленения разреза с учетом пластового	
давления и давления поглощения	
горных пород	
7.5.6.Уточнение расчленения разреза с учетом осложнений,	
происходящих при бурении скважин	
7.5.7. Уточнение расчленения разреза с учетом необходимо-	
сти охраны недр и окружающей среды	
7.6. Выбор вида буровой промывочной жидкости	
7.6.1. Классификация буровых циркуляционных агентов 7.6.2. Факторы влияющие на выбор бурового раствора	
л.д. Факторы влияющие на высор оурового раствора	

7.7. Выбор показателей свойств промывочной жидкости	1
7.7.1. Выбор плотности бурового раствора	1 1
7.7.3. Определение минимально необходимого значения ди-	
намического напряжения сдвига для обеспечения ламинар-	
ного режима течения бурового раствора в затрубном про-	
странстве	1
7.7.4. Выбор статического напряжения сдвига	1
7.7.5. Выбор значения условной вязкости	1
7.7.7. Выбор величины показателя фильтрации	1
7.7.8. Прочие свойства бурового раствора	1
7.8. Выбор состава промывочной жидкости	1
7.8.1.Выбор состава глинистого раствора	1
7.8.2. Пример обоснования выбора состава глинистого рас-	
твора	1
7.9. Рекомендации по реализации технологического регламента.	1
7.10. Расчет расхода бурового раствора и материалов для его	
приготовления и регулирования свойств	1
7.10.1. Расчет потребности в буровом растворе	1
7.10.2. Расчет потребности в материалах, реагентах и добав-	_
Kax	1
7.11. Выбор средств для размещения, приготовления, очистки,	1
дегазации, перемешивания и обработки промывочной жидкости. 7.11.1. Выбор оборудования для наземной циркуляционной	1
7.11.1. Выоор ооорудования для наземной циркуляционной системы	1
7.11.2. Выбор емкостей для размещения бурового раствора	1
7.11.2. Оборудование для приготовления, утяжеления и хи-	1
мической обработки бурового раствора	1
7.11.4. Оборудование для очистки и регулирования содер-	•
жания и состава твердой фазы бурового раствора	1
7.11.5. Выбор числа вибросит и сеток для них	1
7.11.6. Выбор гидроциклонов	1
7.11.7. Выбор оборудования для дегазации бурового раствора	1
7.11.8. Оборудование для перемешивания раствора в емкостях	1
7.11.9. Выбор аппаратуры для контроля количества бурового	
раствора в циркуляционной системе и качества раствора	1
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	1
приложение п	
ПРИЛОЖЕНИЕ. Перевод в метрическую систему единиц	1

Ä

199