ЖУРНАЛ СТРУКТУРНОЙ ХИМИИ

2013. Tom 54, № 2

Март – апрель

C. 299 - 305

УДК 548.737:547.1:547.89

КРИСТАЛЛИЧЕСКАЯ И МОЛЕКУЛЯРНАЯ СТРУКТУРА 1,1-КВАЗИГЕРМАТРАНДИОЛА — 1,1-ДИГИДРОКСИ-2,8-ДИОКСА-5-АЗАГЕРМАКАНА

М.Г. Воронков 1 , А.А. Корлюков 2 , Д.Р. Хамитова 2 , М.И. Бузин 2 , Г.С. Самохин 1 , Т.А. Кочина 1

E-mail: t-kochina@mail.ru

Статья поступила 22 марта 2012 г.

Методом рентгеновской дифракции установлена кристаллическая и молекулярная структура квазигерматрандиола $(HO)_2Ge(OCH_2CH_2)_2NH$ при 155 К. Квантово-химическим методом с использованием теории возмущения Меллера—Плессе второго порядка (MP2) и валентно-расщепленного базисного набора с поляризационными и диффузными функциями для всех типов атомов 6-311++G(d,p) рассчитаны структурные параметры этой молекулы. В кристалле молекулы квазигерматрандиола объединены в колонки за счет водородных связей О—Н···О и N—H···O средней силы. Колонки между собой объединяются за счет слабых водородных связей О—Н···O и N—H···O. Методом калориметрии установлен фазовый переход в кристалле квазигерматрандиола при 150—145 К.

Ключевые слова: квазигерматрандиол, молекулярная и кристаллическая структура, рентгеноструктурный анализ, фазовый переход.

Соединения пентакоординированного германия (герматраны, квазигерматраны [1—5], гипогерматраны [6]), содержащие трансаннулярную координационную связь $N\rightarrow Ge$, в последние годы вызывают большой интерес. Это особенно относится к их представителям, содержащим у атома Ge гидроксильную группу: 1-герматранол HOGe(OCH₂CH₂)₃N (I) [7, 8], 1,1-квазигерматрандиол (1,1-дигидрокси-2,8-диокса-5-азагермокан) (HO)₂Ge(OCH₂CH₂)₂N (II) [9, 10] и 1,1,1-гипогерматрантриол (HO)₃GeOCH₂CH₂NH₂ (III) [11]. Судя по реакционной способности и данным ЯМР 1 H [12], внутрикомплексные германийорганические соединения I и II значительно отличаются повышенной основностью группировки OH от изоструктурных соединений пентакоординированного кремния — 1-силатранола HOSi(OCH₂CH₂)₃N (IV) и 1,1-квазисилатрандиола (1,1-дигидрокси-2,8-диокса-5-азасилокан) N(CH₂CH₂O)₂Si(OH)₂ (V).

Аналогичная зависимость наблюдается и для изоструктурных соединений мезоидов R_3 MOH (M = Si, Ge, Sn; R = Me, Ph) [13—16].

Благодаря этому гидроксильная группа в этих соединениях с M = Ge легко замещается на электроотрицательные заместители X при взаимодействии с соответствующими солями аммония (NH_4X) [17, 18]. Кристаллические и молекулярные структуры 1-герматранола [19, 20], его комплекса с хлороформом [20] и моногидрата [19] установлены методом рентгеновской дифракции. Этим же методом также установлено строение молекулы 1-силатранола [21].

Попытка синтезировать индивидуальный 1,1-квазигерматрандиол (II) взаимодействием диэтаноламинов $RN(CH_2CH_2OH)_2$ (R=H, Me) с диоксидом германия успехом не увенчалась [10]. При этом удалось выделить лишь спироциклический $[N(CH_2CH_2O)_2]_2$ и трицикличе-

¹Институт химии силикатов им. И.В. Гребенщикова РАН, Санкт-Петербург

²Институт элементоорганических соединений им. А.Н. Несмеянова РАН, Москва

[©] Воронков М.Г., Корлюков А.А., Хамитова Д.Р., Бузин М.И., Самохин Г.С., Кочина Т.А., 2013