О.В. Шухто, Д.Б. Березин, С.А. Сырбу

Строение и свойства функциональных производных углеводородов

Учебное пособие

Иваново

2009

. Ä

Федеральное агентство по образованию Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

Ивановский государственный химико-технологический университет

О.В. Шухто, Д.Б. Березин, С.А. Сырбу

СТРОЕНИЕ И СВОЙСТВА ФУНКЦИОНАЛЬНЫХ ПРОИЗВОДНЫХ УГЛЕВОДОРОДОВ

Учебное пособие

Иваново 2009

УДК 547.542.95

Шухто О.В., Березин Д.Б., Сырбу С.А.

Строение и свойства функциональных производных углеводородов: учебное пособие / Иван. гос. хим.-технол. ун-т. - Иваново, 2009 - 92 с. ISBN

Учебное пособие содержит основные теоретические положения курса лекций по дисциплине «Органическая химия и основы биохимии, функциональные производные углеводородов», задания для контрольной работы по теме «Функциональные производные углеводородов» и рекомендации по ее выполнению. Предназначено для студентов заочного отделения.

Печатается по решению редакционно-издательского совета Ивановского государственного химико-технологического университета

Рецензенты:

кафедра органической химии Ивановского государственного университета;

кандидат химических наук С.А. Зданович (Институт химии растворов РАН)

Контрольная работа №2

ПОЛУЧЕНИЕ И ХИМИЧЕСКИЕ СВОЙСТВА ФУНКЦИОНАЛЬНЫХ ПРОИЗВОДНЫХ УГЛЕВОДОРОДОВ

Для выполнения контрольной работы студенту предлагается органическое соединение — первичное галогенопроизводное — общей формулы R- CH_2 -X, где X — атом галогена, R — углеводородный заместитель, имеющий ароматическую или алифатическую природу.

ВОПРОСЫ

Из первичного галогенопроизводного R-CH₂-X синтезировать следующие соединения:

1. Спирты: a) R-CH₂OH; б) (R-CH₂)₂CHOH; в) (R-CH₂)₃COH.

Написать реакции спирта а) со следующими веществами:

 ${\rm HBr}^{\sharp}$, ${\rm NH_3}$, ${\rm PCl_5}$, ${\rm H_2SO_4}$ на холоду, ${\rm KMnO_4}$ (водный раствор). Привести механизм отмеченной реакции.

2. Альдегид R-CH₂-COH.

На полученный альдегид подействовать следующими веществами: аммиачным раствором Ag_2O , водородом на катализаторе, реактивом Гриньяра (любой по выбору), $HCN^{\#}$, $NaHSO_3$, написать реакции с аммиаком, анилином. Привести механизм отмеченной $^{\#}$ реакции.

- 3. Альдоль из альдегида R-CH₂-COH.
- 4. Продукт кротоновой конденсации R-CH₂-COH.
- 5. Из альдегида (п. 2) ацеталь R-CH₂-CH(OCH₂R)₂.
- 6. Карбоновую кислоту RCOOH.
- 7. Карбоновую кислоту с числом атомов углерода (n+1), т.е. R-CH₂COOH.

Получить из карбоновой кислоты R-CH₂COOH:

- 1) кальциевую соль кислоты R-CH₂COOH;
- 2) хлорангидрид кислоты R-CH₂COOH;
- 3) [#] сложный эфир кислоты (п. 7) и спирта R-CH₂OH;
- 4) ангидрид карбоновой кислоты R-CH₂COOH;
- 5) амид кислоты R-CH₂COOH.

Из выше полученных функциональных производных карбоновой кислоты получить исходную карбоновую кислоту R- CH_2COOH . Привести механизм отмеченной $^{\#}$ реакции.

- 8. Карбоновую кислоту R-CH₂COOH с использованием ацетоуксусного эфира, а также с использованием малонового эфира.
- 9. Кетон $(R-CH_2)_2CO$ из кальциевой соли $R-CH_2COOH$, а также из самой кислоты $R-CH_2COOH$.
- 10. Кетон R- CH_2COCH_3 (с использованием ацетоуксусного эфира). Из этого кетона получить оксим. Изобразить проекционные формулы анти- и синизомеров этого оксима.
- 11. Галогенопроизводные (R-CH₂)₂CH-X, где X=C1,Bг,J.
- 12. Нитросоединение R-CH₂NO₂.

4

Ä

Написать реакции нитросоединения R-CH₂NO₂ со следующими веществами:

- 1) водородом на катализаторе;
- 2) раствором гидроксида натрия.
- 13. Первичный амин R- CH_2NH_2 без примесей вторичного и третичного аминов. Написать реакции амина R- CH_2NH_2 со следующими веществами:
- 1) соляной или серной кислотой;
- 2) хлорангидридом уксусной кислоты;
- 3) азотистой кислотой.
- 14. Первичный амин с числом атомов углерода (n+1), т.е. $R-CH_2CH_2NH_2$. Из амина $R-CH_2CH_2NH_2$ получить вторичный $RCH_2CH_2-NH-CH_2R$ и третичный $RCH_2CH_2-N-(CH_2R)_2$ амины.
- 15. α -Гидроксикарбоновую кислоту с числом атомов углерода (n+1), т.е. RCH₂CH(OH)COOH. Написать реакцию синтеза лактида полученной гидроксикислоты.
- 16. α -Аминокарбоновую кислоту с числом атомов углерода (n+1), т.е. RCH₂CH(NH₂)COOH. Изобразить проекционные формулы L- и D-энантиомеров этой кислоты. Получить ацильное производное α -аминокислоты по аминогруппе (ацил остаток кислоты RCOOH) и сложный эфир α -аминокислоты и спирта R-CH₂OH.

ФУНКЦИОНАЛЬНЫЕ ПРОИЗВОДНЫЕ УГЛЕВОДОРОДОВ

ГАЛОГЕНОПРОИЗВОДНЫЕ УГЛЕВОДОРОДОВ

Производные углеводородов, содержащие в своем составе один или несколько атомов галогена, имеющих ковалентную связь C-X, где X = F, Cl, Br, J.

Атомы галогенов (VII группа Периодической системы n_p^5 элементов) имеют на внешнем электронном уровне (n) 7 n_s^2 // // n_s^2 электронов, 6 из которых образуют три неподеленные n_s^6 электронные пары. За счет седьмого, неспаренного электрона эти элементы могут образовывать ковалентную связь с n_s^6 или n_s^6 или n_s^6 или n_s^6 углерода в органических соединениях: n_s^6 или n_s

Строение функциональной группы

Ковалентная связь углерод-галоген поляризована $C^{\delta +} \to X^{\delta -}$, т.к. электроотрицательность атомов галогенов выше электроотрицательности атома углерода. Полярность связи уменьшается в ряду F>Cl \geq Br>J. Т.о. галогены проявляют относительно углеводородного фрагмента молекулы (R)

отрицательный индукционный (-I) эффект (электроноакцепторное действие). За счет наличия неподеленной электронной пары на несвязывающей орбитали атома галогены могут вступать в сопряжение с π -системой углеводородного заместителя, проявляя +C-эффект:

Поскольку в случае производных бензола |-I|>|+C|, то суммарное действие атома галогена на ароматическую систему является электроноакцепторным, замедляющим реакции электрофильного замещения (S_E2), но ориентирующим заместитель, тем не менее, в орто- и пара-положения бензольного кольца. Поляризуемость связи C-X возрастает в противоположном ряду F<Cl<Br<J, вызывая снижение ее энергии (Есв., кДж/моль: 443 > 328 > 279 > 240), поэтому йодпроизводные вступают в реакцию замещения галогена максимально легко.

Номенклатура и классификация

Галогенопроизводные классифицируют по:

- типу атомов галогенов (фтор-, хлор-, бром- и йод-производные),
- их количеству (моно-, ди-, три- и т.д.) и взаимному расположению,
- по строению углеводородного заместителя (насыщенные, ненасыщенные, линейные, циклические, ароматические и т.д.),
 - насыщенные галогенопроизводные в свою очередь классифицируют как первичные, вторичные и третичные (атом галогена связан с первичным, вторичным или третичным атомом углерода).

Для построения названий галогенопроизводных по номенклатуре ИЮПАК выбирают главную цепь т.о., чтобы она содержала атом углерода, связанный с галогеном. Указывают номером положение атома галогена в главной цепи, причем он определяет начало ее нумерации. Например, 4-метил-2-бром-пентан: CH_3 —CH- CH_2 -CH- CH_3 CH_3

Ароматические галогенопроизводные называют, указывая положение атома галогена в ароматической π -системе, исходя из общих правил номенкла туры:

$$Cl$$
 $CH-CH_3$ $CH-CH_3$

Ä

Физические свойства

В зависимости от строения углеводородного заместителя могут быть газообразными веществами (метилбромид CH₃Br ($t_{\text{кип.}}$ =3,5°C), хлористый винил CH₂=CH-Cl ($t_{\text{кип.}}$ =-13,5°C) и т.д.), жидкостями (хлороформ CHCl₃ ($t_{\text{кип.}}$ =61,3°C), дихлорэтан Cl-CH₂-CH₂-Cl ($t_{\text{кип.}}$ =83,7°C), бромбензол C₆H₅Br ($t_{\text{кип.}}$ =156°C)) и твердыми веществами (йодоформ CHJ₃ ($t_{\text{пл.}}$ =119°C, $t_{\text{кип.}}$ =210°C), ДДТ – 4,4'- дихлордифенилтрихлорэтан, поливинилхлорид –(CHCl-CH₂)_n –). Температура их кипения возрастает по мере увеличения размера атома галогена и их числа.

Нерастворимы в воде, растворимы в органических растворителях, жидкости сами являются растворителями (CH_2Cl_2 , $CHCl_3$, CCl_4), токсичны, обладают сильным запахом, неогнеопасны (с увеличением числа атомов галогенов в молекуле снижается горючесть вещества).

Методы получения

1. Замещение атома водорода в алканах по цепному радикальному механизму, а также галогенирование алкилбензолов на свету с замещением атома водорода при α-углеродном атоме:

$$R-H+X_2$$
 hv $R-X+HX$, где $X-$ атом галогена (Br, Cl)

2. Галогенирование ароматических углеводородов в присутствии катализатора с образованием ароматических галогенопроизводных:

$$+ Cl_2$$
 $\xrightarrow{AlCl_3}$ $+ HCl$

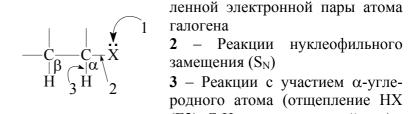
3. Присоединение по кратным связям алкенов или алкинов молекул X_2 или НХ. Таким способом могут быть получены не только моно-, но и ди- или тетрагалогенопроизводные:

4. Замещение на галоген групп -NH2, -OH и др. (в основном у несопряженных галогеногпроизводных):

$$CH_3$$
- $CH_2OH + HBr \rightarrow CH_3$ - $CH_2Br + H_2O$
 CH_3 - $CH_2OH + PCl_5 \rightarrow CH_3$ - $CH_2Cl + POCl_3$

Реакция протекает по механизму нуклеофильного замещения, который будет рассмотрен позднее.

5. Взаимодействие альдегидов и кетонов с PCl₅ или PBr₅:


$$CH_3$$
— C — CH_3 + PCl_5 \rightarrow $POCl_3$ + CH_3 — C — CH_3
 Br
 Br
 CH_3 — C — CH_3
 Br

Химические свойства

X = Cl, Br, J

Реакционные центры - это те атомы и химические связи в молекуле, взаимодействие которых с теми или иными реагентами наиболее вероятно.

Реакционные центры в молекулах несопряженных галогенопроизводных:

- 1 Реакции с участием неподеленной электронной пары атома

- 1. Образование металлорганических соединений Е2), С-Н кислотные свойства)

8

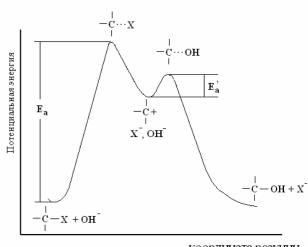
2. Реакции замещения атома галогена на другие функциональные группы. $CH_3\text{-}CH_2Cl + KOH_{\text{разб. водн.}} \to CH_3\text{-}CH_2OH + HCl$

Реакция протекает по механизму нуклеофильного замещения (S_N) .

Hуклеофил (Nu) — ненасыщенная частица или молекула, имеющая электроноизбыточные атомы, π -электроны, или несущая отрицательный заряд, способная взаимодействовать с частично положительно заряженным атомом углерода.

В результате таких процессов уходящая группа (нуклеофуг – «подвижный в виде нуклеофила») X в органическом субстрате RX, содержащем связь C_{sp} 3-X, замещается нуклеофильным реагентом :Nu таким образом, что неподеленная пара нуклеофила в продукте реакции RNu становится электронной парой σ -связи C-Nu, а электронная пара σ -связи C-X становится неподеленной парой уходящей группы:

$$Nu: + -C - X \longrightarrow Nu - C - + X:$$


Различают мономолекулярное $(S_N 1)$ и бимолекулярное $(S_N 2)$ нуклеофильное замещение.

Механизм $S_N 1$ — мономолекулярное нуклеофильное замещение (классический ионизационный механизм Ингольда — Хьюза), протекает, как правило, в растворе:

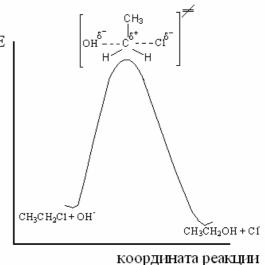
$$H_3C$$
— C — C 1 — C 1 — C 1 — C 2 — C 3 — C 3 — C 4 — C 3 — C 4 — C 5 — C 4 — C 5 — C 5 — C 6 — C 6 — C 7 — C 8 — C 9 — C 9 — C 1 — C 9 — C 1 — C 1 — C 1 — C 3 — C 3 — C 4 — C 4 — C 5 — C 4 — C 6 — C 8 — C 8 — C 9 — C 9 — C 1 — C 1 — C 1 — C 1 — C 3 — C 1 — C 3 — C 3 — C 4 — C 4 — C 5 — C 4 — C 6 — C 8 — C 9 — C 9 — C 9 — C 1 — C 2 — C 3 — C 3 — C 4 — C

На первой стадии происходит гетеролитическая диссоциация исходного соединения с образованием карбокатиона и аниона X^{-} . На второй стадии карбокатион быстро взаимодействует с имеющимся в растворе нуклеофилом (либо самим растворителем).

Стадия образования карбокатиона является лимитирующей. По этой причине

координата реакции

скорость $S_N 1$ — реакции зависит только от концентрации алкилгалогенида (кинетическое уравнение первого порядка):


$$v = -\frac{dC_{RCl}}{d\tau} = k_{v}[RCl]$$

Механизм $S_N 2$ — бимолекулярное нуклеофильное замещение:

Поскольку образование связи с нуклеофилом и разрыв связи с уходящей группой происходит одновременно, эту реакцию называют *согласованным*, или *бимолекулярным* процессом.

Нуклеофил участвует в образовании E переходного состояния, поэтому скорость S_N2 — реакции зависит от концентрации как субстрата RX, так и нуклеофила :Nu (кинетическое уравнение второго порядка):

$$v = -\frac{dC_{RCl}}{d\tau} = k_v [OH^-][RCl]$$

10