• • •

Министерство образования и науки Российской Федерации Ярославский государственный университет им. П.Г. Демидова

В.Ш. Бурд

МЕТОД УСРЕДНЕНИЯ НА БЕСКОНЕЧНОМ ПРОМЕЖУТКЕ И НЕКОТОРЫЕ ЗАДАЧИ ТЕОРИИ КОЛЕБАНИЙ

Ярославль, 2013

УДК 517.928 ББК В 161.6 Б 91

Рецензенты:

кафедра «Прикладная математика и вычислительная техника» ЯГТУ; кандидат физико-математических наук, доцент ЯГПУ П.А. Корнилов

Б 91

Бурд В.Ш. Метод усреднения на бесконечном промежутке и некоторые задачи теории колебаний / Научный редактор П.Н. Нестеров. — Ярославль: ЯрГУ, 2013-420 с. ISBN 978-5-8397-0934-8

Одним из наиболее важных асимптотических методов в теории дифференциальных уравнений с малым параметром является так называемый метод усреднения. Эта книга посвящена изложению теории метода усреднения на бесконечном интервале и приложениям метода к задачам теории колебаний.

Книга адресована широкой аудитории математиков, физиков и инженеров, которые интересуются асимптотическими методами теории нелинейных колебаний. Она доступна студентам старших курсов по физико-математическим направлениям подготовки.

Издание финансируется в рамках государственного задания высшим учебным заведениям на 2013 год (регистрационный номер: 8.7843.2013).

Рис. 11. Библиогр.: 188 назв.

РЕДКОЛЛЕГИЯ

С.Д. Глызин, П.Н. Нестеров (научный редактор)

УДК 517.928 ББК В 161.6 Б 91

ISBN 978-5-8397-0934-8

- © Ярославский государственный университет им. П.Г. Демидова, 2013
- © Бурд В.Ш., 2013

. . . .

Оглавление

Предисловие	S
Часть І. Усреднение линейных уравнений	13
Глава 1. Периодические и почти периодические функции.	
Краткое введение	1 4
1.1. Периодические функции	14
1.2. Почти периодические функции	17
1.3. Векторно-матричные обозначения	22
Глава 2. Ограниченные решения	25
2.1. Однородная система уравнений с постоянными	
коэффициентами	25
2.2. Ограниченные решения неоднородных систем	26
2.3. Лемма Боголюбова	32
Глава 3. Леммы о регулярности и устойчивости	36
3.1. Регулярные операторы	36
3.2. Лемма о регулярности	37
3.3. Регулярность периодических операторов	42
3.4. Лемма об устойчивости	44
Глава 4. Параметрический резонанс в линейных системах	51
4.1. Системы с одной степенью свободы.	
Случай гладкого параметрического возмущения .	51
4.2. Параметрический резонанс в линейных системах	
с одной степенью свободы. Системы с ударами	55
4.3. Параметрический резонанс в линейных	
системах с двумя степенями свободы.	
Простой и комбинационный резонансы	59
4.4. Параметрические колебания струны	63

Глава 5	о. Высшие приближения метода усреднения	
	для линейных уравнений. Задача устойчивости.	
	Метод И.З. Штокало	66
5.1.	Постановка задачи	66
5.2.	Преобразование основной системы	67
5.3.	Замечание о периодическом случае	70
5.4.	Устойчивость решений системы	
	линейных дифференциальных уравнений	
	с пп коэффициентами, близкими к постоянным	73
5.5.	Пример. Обобщенное уравнение Хилла	76
5.6.	Экспоненциальная дихотомия	80
5.7.	Устойчивость решений систем с малым	
	параметром и экспоненциальная дихотомия	83
5.8.	Оценка обратного оператора	85
Глава 6	 Линейные дифференциальные уравнения 	
	с быстрым и медленным временем	87
6.1.	Обобщенные леммы о регулярности и устойчивости	87
6.2.	Пример. Параметрический резонанс в уравнении	
	Матье с медленно меняющимся коэффициентом .	92
6.3.	Высшие приближения и задача устойчивости	94
Глава 7	. Асимптотическое интегрирование	
	и метод усреднения	98
	Постановка задачи	98
7.2.	Преобразование основной системы	99
7.3.	Асимптотическое интегрирование	
	адиабатического осциллятора	104
Глава 8	В. Линейные сингулярно возмущенные уравнения	
	с почти периодическими коэффициентами	110
Часть	II. Усреднение нелинейных уравнений 1	117
Глава 9	. Системы в стандартной форме	
	с почти периодическими коэффициентами.	
	Первое приближение	118
9.1.	Постановка задачи	118
	Теорема существования. Почти периодический	
- · — •	случай	119

. Ä

-

9.3.	Теорема существования. Периодический случай	123
9.4.	Исследование устойчивости почти периодического	
	решения	126
9.5.	Более общая зависимость от параметра	132
9.6.	Почти периодические решения квазилинейных	
	систем со многими степенями свободы	134
9.7.	Системы с быстрым и медленным временем	142
9.8.	Принцип усреднения для одного класса	
	сингулярно возмущенных систем	148
Глава 1	0. Системы в стандартной форме.	
	Первые примеры	15 4
10.1	. Динамика отбора генетической популяции	
	в изменяющейся среде	154
10.2	. Периодические колебания квазилинейных	
	автономных систем с одной степенью свободы	
	и осциллятор Ван дер Поля	156
10.3	<u> </u>	
	квазилинейных систем с одной степенью свободы	164
10.4	. Субгармонические решения	168
10.5	. Слабонелинейное уравнение Дуффинга.	
	Резонансные колебания	171
10.6	. Уравнение Дуффинга.	
	Вынужденные субгармонические колебания	179
10.7	. Почти периодические решения вынужденного	
	уравнения Дуффинга без демпфирования	184
10.8	. Почти периодические решения	
	возмущенного осциллятора Ван дер Поля.	
	Нерезонансный случай	186
10.9	. Вынужденные колебания осциллятора	
	Ван дер Поля под действием почти периодической	
	силы с медленно изменяющейся амплитудой	191
10.1	0. Резонансные колебания	
	осциллятора Ван дер Поля	193
	1. Два слабо связанных осциллятора Ван дер Поля	195
10.1	2. Возбуждение параметрических колебаний	
	ударами в нелинейных системах	199
10.1	3. Вынужденные колебания уравнения Дуффинга.	
	Двухчастотное воздействие	207

Глава 11	. Маятниковые системы	
	с колеблющимся подвесом	210
11.1.	История и физические применения	210
11.2.	Уравнение движения простого маятника	
	с вибрирующим подвесом	213
11.3.	Введение малого параметра и приведение	
	уравнений к стандартной форме	215
11.4.	Исследование устойчивости состояний равновесия	217
11.5.	Устойчивость верхнего состояния равновесия	
	стержня с распределенной массой	220
11.6.	Плоские вибрации точки подвеса	222
11.7.	Маятник с исчезающей во времени	
	амплитудой колебаний точки подвеса	225
11.8.	Многочастотные колебания подвеса маятника	229
11.9.	Система маятник-шайба с вибрирующим	
	основанием (маятник Челомея)	234
Глава 12	. Высшие приближения метода усреднения	242
12.1.	Формализм метода усреднения для систем	
	в стандартной форме	242
12.2.	Основная теорема о высших приближениях	
	в периодическом случае	246
12.3.	Теорема о высших приближениях	
	в почти периодическом случае	250
12.4.	Общая теорема о высших приближениях	
	в почти периодическом случае	254
12.5.	Высшие приближения для систем	
	с быстрым и медленным временем	257
12.6.	Поддержание вращательных режимов маятника	
	с колеблющейся точкой подвеса	259
12.7.	Устойчивость в критическом случае	
	пары чисто мнимых корней	
	для двумерной автономной системы	266
12.8.	Бифуркация рождения цикла	
	(бифуркация Андронова-Хопфа)	271
Глава 13	. Устойчивость при постоянно действующих	
	возмущениях и усреднение	
	на неограниченном интервале	278
13.1.	Основные обозначения и вспомогательные	
	утверждения	278

13.2.	Теоремы об устойчивости при постоянно	
	действующих возмущениях	281
13.3.	Интегральная сходимость и близость решений	
	на неограниченном интервале	287
13.4.	Теоремы об усреднении	289
	Системы с быстрым и медленным временем	293
	Близость медленных переменных	
	на бесконечном интервале в системах	
	с быстро вращающейся фазой	296
Глава 14	l. Системы с быстро вращающейся фазой	301
14.1.	Системы с одной степенью свободы, близкие	
	к консервативным. Переменные действие-угол	301
14.2.	Переменные действие-угол для гамильтоновой	
	системы с одной степенью свободы	305
14.3.	Автономные возмущения гамильтоновой системы	
	с одной степенью свободы	307
14.4.	Переменные действие-угол для математического	
	маятника	310
14.5.	Квазиконсервативный виброударный осциллятор	314
14.6.	Формальная схема усреднения для систем	
	с быстрой фазой	318
Глава 15	б. Резонансные периодические колебания	
	в неавтономных системах	
	с быстро вращающейся фазой	325
15.1.	Преобразование основной системы в окрестности	
	невырожденного резонансного уровня	327
15.2.	Поведение решений основной системы	
	в окрестности невырожденного	
	резонансного уровня	329
15.3.	Вынужденные резонансные колебания	
	и вращения математического маятника	331
15.4.	Резонансные колебания в системах с ударами	338
Глава 16	 Резонансные пп колебания 	
	в нелинейных двумерных системах	
	с медленно меняющимися параметрами	346
16.1.	Постановка задачи и преобразование	
	основной системы	346
16.2	Существование и устойчивость пп решений	349

Ä

8

16.3.	Вынужденные колебания и вращения	
	математического маятника под действием	
	двухчастотного возмущения	
	с близкими частотами	360
Часть	III. Приложения	365
Прилож	ение А. Почти периодические функции	366
Прилож	ение Б. Устойчивость решений	
	дифференциальных уравнений	377
Б.1. (Основные определения	377
Б.2. ′	Теоремы об устойчивости	
]	по первому приближению	381
Б.3.	Функции Ляпунова	385
Прилож	ение В. Некоторые сведения	
	из функционального анализа	389
B.1.	Банаховы пространства	389
B.2.	Линейные операторы	391
	Принцип сжатых отображений	
Пипород	wns.	401