Ä

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

А.Л. Зуйков

ГИДРАВЛИКА

В двух томах

Рекомендовано Учебно-методическим объединением вузов РФ по образованию в области строительства в качестве учебника для студентов высших учебных заведений, обучающихся по направлению подготовки 270800 «Строительство» (10.04.2014 г., № 102-15/819)

Москва 2014

Ä

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

А.Л. Зуйков

ГИДРАВЛИКА

Том 1

ОСНОВЫ МЕХАНИКИ ЖИДКОСТИ

Москва 2014

УДК 532:627.8 ББК 30.123 391

Рецензенты:

доктор технических наук, профессор Д.В. Штеренлихт, заведующий кафедрой,

доктор технических наук, профессор *Н.В. Ханов*, профессор, кафедра гидравлики, ФГБОУ ВПО «Московский государственный университет природообустройства»;

кандидат технических наук H.K. Пономарев, заведующий кафедрой, доктор технических наук, профессор F.A. Животовский, профессор, кафедра гидравлики и гидротехнических сооружений,

ФГБОУ ВПО «Российский университет дружбы народов»; доктор технических наук В.В. Беликов, начальник отдела численных гидравлических исследований ОАО «НИИЭС»

391 Зуйков, А.Л.

Гидравлика: учебник: в 2 томах. Т. 1: Основы механики жидкости / А.Л. Зуйков; М-во образования и науки Росс. Федерации, Моск. гос. строит. ун-т. Москва: МГСУ, 2014 — . 518 с. ISBN 978-5-7264-0833-0 ISBN 978-5-7264-0834-7 (т. 1)

Изложен соответствующий государственному образовательному стандарту высшего профессионального образования по направлению 270800 «Строительство» материал курса «Основы механики жидкости», который охватывает первую из трех частей дисциплины «Гидравлика». Раскрыты основные законы равновесия и движения жидкостей.

Для студентов всех уровней, форм и профилей подготовки в высших учебных заведениях по направлению 270800 «Строительство», а также аспирантов, инженерно-технических и научных работников в области гидравлики и механики жидкости.

УДК 532:627.8 ББК 30.123

ISBN 978-5-7264-0834-7 (T. 1) ISBN 978-5-7264-0833-0

© ФГБОУ ВПО «МГСУ», 2014

ОГЛАВЛЕНИЕ

1. ЖИДКОСТИ И ИХ ОСНОВНЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА	5
1.1. Предмет механики жидкости	5
1.2. Краткий исторический обзор	8
1.3. Основные физические свойства жидкостей	9
1.4. Силы, действующие на жидкость	17
2. ГИДРОСТАТИКА	19
2.1. Свойства гидростатического давления	19
2.2. Дифференциальные уравнения равновесия жидкости	
(уравнения Эйлера)	21
2.3. Интегрирование дифференциальных уравнений гидростатики_	23
2.4. Поверхности равного давления	24
2.5. Основное уравнение гидростатики и его следствия	25
2.6. Пьезометрическая высота. Вакуум. Измерение давления	31
2.7. Относительный покой жидкости	33
2.8. Давление жидкости на плоскости конечных размеров	38
2.9. Давление жидкости на криволинейные поверхности	44
2.10. Напряжения в стенках труб круглого сечения.	
Котельная формула	49
2.11. Плавание тел	51
2.11.1. Закон Архимеда	51
2.11.2. Метацентр и метацентрический радиус	55
2.11.3. Статическая остойчивость плавающих тел	58
3. КИНЕМАТИКА ЖИДКОСТИ	62
3.1. Методы описания движения жидкости	62
3.2. Движение бесконечно малой частицы жидкости.	
Первая теорема Гельмгольца	65
3.3. Линии тока и элементарная струйка жидкости	72
3.4. Уравнение неразрывности (сплошности)	
в переменных Эйлера	75
3.5. Уравнение неразрывности для элементарной струйки	78
3.6. Уравнение неразрывности в переменных Лагранжа	80
3.7. Поток жидкости	83
3.8. Безвихревое (потенциальное) движение	86
3.8.1. Функция потенциала скорости	86
3.8.2. Плоское потенциальное движение	89
3.8.3. Формы плоских потенциальных течений	97

	3.9. Вихревое движение	110
	3.9.1. Основные понятия	111
	3.9.2. Вторая теорема Гельмгольца	112
	3.9.3. Циркуляция скорости. Теорема Стокса	114
	3.9.4. Винтовое течение	115
4.	ДИНАМИКА НЕВЯЗКОЙ (ИДЕАЛЬНОЙ) ЖИДКОСТИ	120
	4.1. Дифференциальные уравнения движения	
	невязкой жидкости в переменных Эйлера	120
	4.2. Дифференциальные уравнения движения	
	невязкой жидкости в переменных Лагранжа	124
	4.3. Преобразование Громеки	130
	4.4. Уравнения Гельмгольца для движения невязкой жидкости	132
	4.5. Уравнение Бернулли для невязкой жидкости	134
	4.5.1. Вывод и области действительности уравнения Бернулли	134
	4.5.2. Интерпретация уравнения Бернулли	138
	4.5.3. Уравнение Бернулли для неустановившегося движения	141
	4.6. Основы теории поверхностных гравитационных волн	145
	4.6.1. Классификация волн и терминология	145
	4.6.2. Описание гравитационных волн в переменных Эйлера	149
	4.6.3. Описание прогрессивных волн в переменных Лагранжа	172
	4.6.4. Групповая скорость волн_	188
	4.6.5. Разрушение волн на «мелководье»	192
	4.6.6. Энергия волн	194
5.	ДИНАМИКА ЛАМИНАРНЫХ ТЕЧЕНИЙ	197
	5.1. Два режима движения вязкой (реальной) жидкости	
	5.2. Уравнения движения вязкой жидкости	
	в компонентах напряжений	202
	5.3. Тензор вязких напряжений	206
	5.4. Дифференциальные уравнения движения вязкой жидкости	
	(уравнения Навье — Стокса)	211
	5.5. Уравнения Громеки — Стокса	-216
	5.6. Уравнения Гельмгольца для движения вязкой жидкости	
	5.7. Интеграл Бернулли для вязкой жидкости.	
	Диссипация механической энергии	220
	5.7.1. Уравнение Бернулли для элементарной струйки	
	реальной жидкости в установившемся потоке	220
	5.7.2. Интерпретация уравнения Бернулли	-222
	5.7.3. Уравнение Бернулли для неустановившегося движения	
	вязкой несжимаемой жидкости	224
	5.7.4. Versuchardinger i isabio kamangioniaeer i ibawanka	

5.7.5. Уравнение Бернулли для потока реальной жидкости	229
5.8. Равномерные ламинарные течения	234
5.8.1. Ламинарное течение в круглой трубе	-234
5.8.2. Ламинарное течение в слое на наклонной плоскости	$^{}244$
5.9. Установившееся неравномерное ламинарное течение	
на начальном участке круглой трубы	253
6. ДИНАМИКА ТУРБУЛЕНТНЫХ ТЕЧЕНИЙ	271
6.1. Турбулентность	271
6.2. Уравнения Рейнольдса	275
6.3. Уравнения Тейлора	282
6.4. Уравнения Гельмгольца при турбулентном	
движении жидкости	284
6.5. Уравнение Бернулли для турбулентного неустановившегося	
движения вязкой несжимаемой жидкости	286
6.6. Полуэмпирические теории турбулентности	290
6.6.1. Гипотеза Буссинеска	 291
6.6.2. Гипотеза Прандтля	 294
6.6.3. Гипотеза Кармана	-298
6.6.4. Гипотеза Тейлора	300
6.7. Равномерные турбулентные течения	 310
6.7.1. Турбулентное течение в круглой трубе	310
6.7.2. Турбулентное течение в слое на наклонной плоскости	332
6.8. Одномерные течения. Законы сохранения	348
7. ОБТЕКАНИЕ ТЕЛ И ТЕОРИЯ ПОГРАНИЧНОГО СЛОЯ	354
7.1. Силы, действующие на обтекаемое тело	354
7.2. Внешняя задача обтекания тел плоским	
потенциальным потоком	364
7.2.1. Функции комплексного переменного	364
7.2.2. Примеры плоских потенциальных течений	369
7.2.3. Формулы Чаплыгина для главного вектора	
и главного момента сил давления на обтекаемое тело	382
7.2.4. Метод конформных отображений	388
7.2.5. Обтекание эллипса и пластины	397
7.2.6. Крыловые профили Жуковского — Чаплыгина	408
7.2.7. Кавитационное обтекание тел	414
7.2.8. Обтекание тел в условиях неустановившегося движения	${421}$
7.3. Теория пограничного слоя	-427
7.3.1. Особенности течения жидкости в пограничном слое	${427}$
7.3.2. Уравнения движения жидкости в ламинарном	_
пограничном слое (уравнения Прандтля)	429

7.3.3. Уравнения Мизеса и Крокко	435
7.3.4. Задачи расчета и примеры решения уравнений	
ламинарного пограничного слоя	439
7.3.5. Интегральное соотношение ламинарного	
пограничного слоя	$\{452}$
7.3.6. Отрыв пограничного слоя	458
7.3.7. Структура и уравнения турбулентного	
пограничного слоя	462
7.3.8. Расчет турбулентного пограничного слоя	464
8. МОДЕЛИРОВАНИЕ ГИДРАВЛИЧЕСКИХ ЯВЛЕНИЙ	476
8.1. Виды моделирования	476
8.2. Численное моделирование	
гидродинамических задач	478
8.2.1. Численное решение уравнений Навье — Стокса	479
8.2.2. Численное моделирование турбулентных течений	484
8.2.3. Основные лицензированные программные комплексы	487
8.3. Гидравлическое (физическое) моделирование	491
8.3.1. Гидромеханическое подобие	492
8.3.2. Инспекционный анализ дифференциальных уравнений _	495
8.3.3. Автомодельность	500
8.3.4. Метод анализа размерностей (л-теорема)	502
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	506
ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ	 507
ТЕРМИНЫ	 508