ВВЕДЕНИЕ

Одной из главных проблем лесного хозяйства является проблема повышения продуктивности лесов. Для ее решения должна быть разработана и планомено существлена широкая система мероприятий, направленная на максимальное удовлетворение древесных растений важнейшими факторами жизни и, в первую очередь, кислородом воздуха, водой, минеральными веществами, светом и другими полезными факторами. Особенно это важно для обширного северного региона России, где более половины Гослесфонда занято переувлажненными землями, что обусловлено комплексом климатических и почвенногеоморфологических особенностей (Мелехов, 1953; Пьявченко 1959, 196, 1971; Артемьев, Чертовской, 1974 и др.).

Избыток влаги в почве, сопровождающийся временным или постоянным анаэробиозом, ухудшает физические свойства и питательную ценность почвы, негативно действует на корневые системы растений (Смоляк, Реуцкий, 1971; Веретенников, Коновалов, 1979; Palter et al, 1989).

При затоплении существенные изменения отмечаются в закреплении и сенсибилизации лучистой энергии солнца, ассимиляции СО₂, оттоке, распределении и потреблении фотоассимилятов, транспорте органических и минеральных элементов по проводящим путям древесных растений и ходе ряда других процессов метаболизма, что в конечном итоге снижает первичную биологическую продуктивность заболоченных лесов и в целом выход полезных продуктов (Хотянович, 1958, 1959; Веретенников, 1968; Смоляк, Реуцкий, 1971; Веретенников, Кузьмин, 1977). Негативное действие затопления на растения еще больше усиливается в зонах аэротехногенного загрязнения (Тарханов, Прожерина, Коновалов, 2004; Коновалов и др., 2001).

Одним из мощных средств повышения продуктивности заболоченных лесов является лесоосушительная мелиорация. Многими исследованиями установлено, что под влиянием осушения жизненное состояние лесов существенно улучшается, а их продуктивность повышается в несколько раз. Известно, что осушение само по себе в ряде лесорастительных условий мало изменяет питательный режим заболоченных почв. Оно рассматривается лишь как необходимое условие для реализации того потенциального плодородия, которым обладают заболоченные почвы к моменту осушения. В целях повышения плодородия осущаемых земель, бедных питательными веществами, в ряде стран в широких масштабах применяются минеральные удобрения. Удобрения широко используются для повышения продуктивности лесов и на минеральных почвах.

В настоящее время известны многочисленные данные, указывающие на особую роль минеральных элементов в регулировании жизнедеятельности растений. Ионы, поступающие в растение из внешней среды, быстро включаются в общий метаболизм клетки. Они входят в структурные образования важнейших соединений, участвуют в различных реакциях энергообмена, синтезе ДНК и РНК, процессах аминирования и переаминирования органических кислот и кетокислот, служат передатчиками электронов в окислительно-восстановительных реакциях, участвуют в транспорте и распределении в растении различных групп эндогенных регуляторов роста (Pirson, 1958, 1960; Hewitt, 1958, 1963; Арнон, 1962; Анисимов, 1973; Курсанов, 1976; Ахромейко, 1953; Арнон, 1962; Тарчевский, 1977; Меняйло, 1987; Габукова, 1989; Чернобровкина, 2001).

При дефиците питательных элементов у растений снижается интенсивность фотосинтеза, падает дыхание корней и поглощение ими из почвы питательных элементов и воды, в дереве замедляется передвижение продуктов фотосинтеза и поступление их в активно функционирующие зоны, нарушается биосинтез пигментов и других биологически активных соединений, в пластидах происходит разрушение фотосинтетических мембран (Репка и др., 1971; Курсанов, 1976; Андреева, 1982; Fogg, 1965). В конечном итоге все эти нарушения ведут к изменению морфогенеза и снижению продуктивности растений.

Как показывает практика, избежать нарушений в метаболизме растений возможно путем внесения в почву минеральных или орга-

нических удобрений. Первые опыты по применению минеральных удобрений в европейских лесах были заложены еще во времена Ю.Либиха (Шумаков, Федорова, 1970). Начиная с 1964 г. минеральная подкормка входит во все государственные программы Финляндии по увеличению продуктивности лесов (Паавилайнен, 1983). Благодаря применению удобрений и осушению Финляндия за 50 лет в 1,5 раза увеличила прирост древесины в расчете на все леса страны (Бузыкин, 2007). По данным Бауле (Baule, 1973) к 1970 г. в мире было удобрено около 2 млн. га лесов. Только в Германии, например, к этому времени удобрения были внесены на площади, превышающей 800 тыс. га (Кгеитz, 1971). К 1980 г. площадь удобренных лесов в мире должна была возрасти до 15–16 млн. га. В Архангельской области в одиннадцатой пятилетке в лесах удобрения были внесены на площади свыше 6,1 тыс. га (Заволожин, Горбик, 1986).

В России в перспективе в системе мероприятий по повышению продуктивности лесов, несмотря на наметившийся в последнее время временный спад, минеральным удобрениям будет принадлежать ведущее место (Бузыкин и др., 1996; Мельников, 1999).

Известно, что на эффективность удобрений большое влияние оказывает водный режим почв и световой режим леса (Коновалов, 1981; Коновалов и др., 1994; Мельников, 1999). При избыточном увлажнении и недостатке света эффективность вносимых под лесные экосистемы удобрений значительно снижается. Рубки и осущение существенно меняют световой режим леса, температурный и гидрологический режим почв, поэтому эти экологические факторы также определенным образом способны влиять на эффективность вносимых удобрений (Мельников, Беляева, 2008).

Предполагаемое в перспективе расширение мелиоративных работ вызывает необходимость расширения теоретических и прикладных исследований в области осушительной и химической мелиорации в различных зонах страны с целью разработки научно обоснованных приемов повышения продуктивности заболоченных и осушаемых лесов. В то же время физиология и биохимия осушенных и особенно

осущенных и удобренных лесов изучена крайне недостаточно, а проводимые работы часто носят весьма выраженный империзм без достаточного теоретического обоснования.

До настоящего времени не выявлены адаптивные реакции хвойных древесных растений к изменяющимся в результате осущения и внесения удобрений условиям водно-воздушного и питательного режимов почв. В частности, недостаточно проведено исследований по изучению влияния минеральных удобрений на физиолого-биохимические процессы древесных растений, особенно на основные энергетические характеристики их, в конечном итоге определяющие лесохозяйственный урожай. Мало сведений имеется также по физиологии удобренных лесов на минеральных почвах.

На осушенных торфяно-болотных почвах такие исследования до последнего времени вообще не проводились, а на минеральных почвах исследования в большинстве своем фрагментарны и порой неоднозначны. Хотя известно, что правильная система питания растений должна строиться на глубоком понимании обмена веществ. Через обменные процессы растительный организм осуществляет всестороннюю связь и взаимодействие с условиями внешней среды в онтогенезе, приспосабливается к меняющимся условиям среды и под их влиянием изменяет свой обмен веществ, структуру и функции в филогенезе, приобретая при этом более совершенную организацию. Поэтому получение таких данных позволит глубже понять характер воздействия лесных мелиораций на метаболизм хвойных растений и в перспективе даст возможность более дифференцировано подойти к разработке научно обоснованных приемов по оптимальным параметрам осущительной сети и рациональному использования минеральных удобрений не только в осущаемых лесах, но и в лесах на минеральных почвах.

Авторы выражают искреннюю благодарность Коноваловой Валентине Михайловне (жене и матери), принимавшей активное участие в сборе и аналитической обработке экспериментального материала.

Richard H. Seasonal variations in dry weight, chlorophyll and solubie carbohydrate content of norway spruce needles (Picea abies (L.) Karst // Medd. Norsk inst. Skogforsk. 1983. V. 38. № 2. P. 14.

Chen C.-M., Ertl J.R., Leisner S.M., Chang C.-C. Localization of Cytokinin Biosynithesis Sites in Plants and Carrot Roots // Plant Physiol. 1985. V. 78. No. 3. P. 510.

Themlitz D.R. Aussagewert von Boden und Nadelanalisen.-Forest Fertilisation-Walddünngung Jyvaskyla (Finland), 1967.

Viro P.L. Die Walddüngung auf finnischen Mineralboden.-Folia fores. № 138. 19, 1972. S. 111.

Wehrmann I. Möglichkeiten und Grenzen der Blattanalyse in der Foreswirtschaft / I. Wehrmann // Landwirtsch. Forsch, 1963. Bd. 16. № 2. S. 130–145.

Zelitch J. The close relationship between net photosynthesis and crop yield / J. Zelitch // Bioscience, 1982. V. 32. № 10. P. 798–802.

SHIP OF SHIP

1.45

ОГЛАВЛЕНИЕ

Введение 3
1. Состояние вопроса7
2. Методы исследований
3. Влияние осущения и минеральных удобрений на физиологию ели32
3.1. Схема опытов
3.2. Особенности экологии осушаемых лесов
3.3. Влияние удобрений на агрохимические свойства
торфяной почвы54
3.4. Влияние минеральных удобрений на водный режим ели 64
3.5. Особенности минерального питания ели
3.6. Сезонная динамика пластидных пигментов
3.7. Фотосинтез ели и сосны на осушенной и удобренной почве 96
3.8. Влияние удобрений на дыхание ели и сосны
3.9. Особенности биометрических показателей ели
на удобренной почве131
4. Влияние минеральных удобрений на физиологию сосны и ели
на минеральных почвах136
4.1. Дыхание корней сосны и ели на удобренной почве
4.2. Особенности водного режима сосны и ели на удобренных
почвах147
4.3. Сезонная динамика пигментов у сосны и ели
4.4. Фотосинтез сосны и ели на удобренной почве
4.5. Дыхание сосны и ели на удобренной почве
4.6. Особенности оттока и передвижения углерода-14
4.7 Влияние азота на суточный и сезонный рост сосны
4.8. Рост хвои под влиянием удобрений
4.9. Влияние минеральных удобрений на рост подпологовых
растений231
5. Влияние природных и антропогенных факторов
на жизнедеятельность растений Крайнего Севера242