УДК 530.1; 539.1 ББК 22.31 В57

Владимиров Ю. С.

ISBN 978-5-93208-696-4

Книга посвящена изложению и анализу геометрического подхода к описанию физического мира, в частности общей теории относительности А. Эйнштейна и многомерной геометрической теории физических взаимодействий. В первой части дано введение в общую теорию относительности. Во второй части детально рассматриваются теория относительности, ее формулировки и обобщения. Третья часть посвящена изложению многомерной геометрической теории микромира. В четвертой части произведен метафизический анализ геометрического и иных подходов к физике с целью обоснования необходимости перехода к более совершенной картине мира.

Книга адресована студентам и преподавателям вузов физикоматематического профиля, физикам-теоретикам и философам.

УДК 530.1; 539.1 ББК 22.31

Деривативное издание на основе печатного аналога: Геометрофизика / Ю. С. Владимиров. — 2-е изд., испр. — М. : БИНОМ. Лаборатория знаний, 2011.-536 с. : ил. — ISBN 978-5-9963-0303-8.

В соответствии со ст. 1299 и 1301 ГК РФ при устранении ограничений, установленных техническими средствами защиты авторских прав, правообладатель вправе требовать от нарушителя возмещения убытков или выплаты компенсации

Оглавление

предисловие ко второму изданию	10
Предисловие к первому изданию	12
Введение	14
Часть I. Общая теория относительности и геометрическое миропо-	
нимание	19
Глава 1. Основные понятия общей теории относительности	20
1.1. Координатные преобразования и тензоры	21
1.1.1. Координатные системы	21
1.1.2. Основы тензорной алгебры	24
1.2. Метрический тензор	27
1.3. Ковариантное дифференцирование	31
1.3.1. Уравнения геодезических линий	31
1.3.2. Ковариантные производные	35
1.4. Тензор кривизны и уравнения Эйнштейна	36
1.4.1. Тензор кривизны	37
1.4.2. Уравнения Эйнштейна	39
1.4.3. Координатные условия	42
1.5. Уравнения движения пробных частиц	44
1.5.1. Монопольные частицы	45
1.5.2. Дипольные частицы	46
Глава 2. Основные следствия общей теории относительности	49
2.1. Метрика Шварцшильда	50
2.1.1. Вывод решения Шварцшильда	51
2.1.2. Анализ метрики Шварцшильда и ее обобщений	54
2.1.3. Уравнения геодезических линий	58
2.1.4. Смещение перигелия Меркурия	61
2.1.5. Эффект отклонения лучей света	64
2.2. Метрика Керра	67
2.2.1. Анализ метрики Керра	67
2.2.2. Уравнения геодезических линий в метрике Керра	70
2.2.3. Некоторые эффекты в метрике Керра	73
2.3. Космологические модели	76
2.3.1. Космология. Постановка задачи	76
2.3.2. Пространства постоянной кривизны	79
2.3.3. Однородные изотропные модели Вселенной	82
2.3.4. Космологическое красное смещение	87

• • •

	2.3.5. Критическая плотность и возраст Вселенной	90
Глава 3.	Монадный метод описания систем отсчета	93
3.1.	Понятие системы отсчета	94
3.2.	Алгебра монадного метода	96
	3.2.1. Алгебра общековариантного монадного метода	96
	3.2.2. Метод хронометрических инвариантов	99
	3.2.3. Метод кинеметрических инвариантов	102
3.3.	Монадные физико-геометрические тензоры	107
3.4.	Монадные операторы дифференцирования	110
3.5.	Монадный вид геометрических уравнений	113
	3.5.1. Уравнения геодезических линий	114
	3.5.2. Уравнения Эйнштейна и тождества	117
3.6.	Монадный метод в точных решениях	119
	3.6.1. Монадный метод в метриках Фридмана	120
	3.6.2. Монадный метод в метрике Шварцшильда	122
	3.6.3. Монадный метод в метрике Керра	126
	3.6.4. Монадный метод в метрике Геделя и ее обобщениях	129
3.7.	Некоторые выводы и замечания	131
Часть II.	Четырехмерная картина мира	133
Глава 4.	Искривленное (риманово) пространство-время	134
	Метрика пространства-времени и ее обобщения	135
	4.1.1. Концептуальные вопросы введения метрики	135
	4.1.2. Геометрия Финслера	138
4.2.	Параллельный перенос и геометрии Схоутена	139
	4.2.1. Геометрии Схоутена	140
	4.2.2. Физические теории в обобщенных геометриях	143
4.3.	Производные Ли и симметрии	147
	4.3.1. Производные Ли	148
	4.3.2. Уравнения и векторы Киллинга	149
	4.3.3. Классификация однородных пространств	154
4.4.	Геометрический смысл тензора кривизны	156
	4.4.1. Перемещения, ассоциированные с циклом	157
	4.4.2. Уравнения девиаций геодезических линий	160
4.5.	Алгебраическая классификация Петрова	162
	4.5.1. Характеристическая матрица	163
	4.5.2. Алгебраическая классификация Петрова	166
	4.5.3. Инварианты тензора кривизны и векторы Дебеве в про-	-00
	странствах различных подтипов	168
	4.5.4. Примеры точных решений различных подтипов	170
4.6	Соответствия между римановыми пространствами	172
4.0.	4.6.1. Конформное соответствие	172
	4.6.2. Проективное соответствие римановых пространств	174
	4.0.2. IIpockindhoc coordereidhe phimanoddix iipocipancis	114

Глава 5.	Гравитация и электромагнетизм в 4-мерном пространстве-вре-	
- 1	мени	175
5.1.	Электромагнитное поле в ОТО	176
	5.1.1. Уравнения Максвелла и Клейна—Фока в искривленном	170
	пространстве-времени	176
F 0	5.1.2. «Частицеподобные» точные решения	179
5.2.	Первая аналогия гравитации и электромагнетизма	181
	5.2.1. Лагранжев формализм электромагнитного поля	182
	5.2.2. Лагранжева формулировка ОТО в метрическом пред-	183
	ставлении	185
E 9	5.2.3. Формализм Палатини	
5.5.	Вторая аналогия гравитации и электромагнетизма	186
	5.3.1. Уравнения Максвелла в монадном виде	186
	5.3.2. Системы отсчета, ассоциированные с электромагнитным	188
	полем	100
	5.3.3. Классификация матриц 3-мерных составляющих тен- зора электромагнитного поля	190
	5.3.4. Алгебраическая классификация систем отсчета	191
5.4	Третья аналогия гравитации и электромагнетизма	191
0.4.	5.4.1. Гамильтонова формулировка электромагнетизма	193
	5.4.2. Гамильтонова формулировка теории гравитации	194
	5.4.3. Суперпространство Уилера—ДеВитта	197
5.5.	Четвертая аналогия гравитации и электромагнетизма	200
3.3.	5.5.1. Дуально сопряженные тензоры кривизны	202
	5.5.2. Квадратичные по тензору кривизны лагранжианы	204
	5.5.3. Классификация матриц электромагнитного тензора 2-	
	го ранга	206
5.6.	Пятая аналогия гравитации и электромагнетизма	207
	Выводы и замечания	209
Глава 6.	Системы отсчета и ориентаций	212
6.1.	Хроногеометрия	214
6.2.	Тетрадный метод	218
	6.2.1. Алгебра тетрадного метода	218
	6.2.2. Тетрадные операторы дифференцирования	221
	6.2.3. Тетрадные физико-геометрические тензоры	223
	6.2.4. Метод изотропных тетрад Ньюмена—Пенроуза	225
6.3.	Диадный метод	228
	6.3.1. Алгебра диадного метода	228
	6.3.2. Диадные физико-геометрические тензоры	234
	6.3.3. Диадные операторы дифференцирования	237
6.4.	Диарный метод	239
	6.4.1. Алгебра диарного метода	240
	6.4.2. Диарные физико-геометрические тензоры и операторы	
	дифференцирования	243

Глава 7.	Фермионная материя в общей теории относительности	244
7.1.	Спиноры и биспиноры	245
	7.1.1. Двухкомпонентные спиноры	245
	7.1.2. Биспиноры	249
	7.1.3. $1 + 3$ -расщепление в пространстве спиноров	251
	7.1.4. Алгебры Клиффорда и 4-компонентные спиноры	255
7.2.	Уравнения Дирака в плоском пространстве-времени	258
	7.2.1. Обсуждение уравнений Дирака	258
	7.2.2. Спинорная запись фундаментальных уравнений	260
7.3.	Фермионы в искривленном пространстве-времени	262
	7.3.1. Уравнения Дирака в искривленном пространстве-вре-	
	мени	262
	7.3.2. Квадрирование уравнений Дирака	264
Часть III	I. Многомерность физического мира	267
Глава 8.	Пятимерные теории Калуцы и Клейна	269
	Основания перехода к пятимерной теории	270
	Геометрический прообраз грави-электромагнитных взаимодей-	
	СТВИЙ	274
	8.2.1. Монадный метод редуцирования $(4+1$ -расщепления) .	274
	8.2.2. Геометрические уравнения в монадном виде	277
8.3.	Пятимерная теория Калуцы (упрощенный вариант)	278
	8.3.1. Переход от 5-мерной геометрии к электродинамике	
	в ОТО	278
	8.3.2. Негеометрические заряженные поля в теории Калуцы.	281
	8.3.3. Спинорное поле	282
8.4.	Теория Калуцы со скаляризмом	284
	8.4.1. Скаляризм в электродинамике и его интерпретация	285
	8.4.2. Сферически-симметричные решения многомерных	
	уравнений Эйнштейна	288
	8.4.3. Скаляризм и конформный фактор	291
	8.4.4. Эффекты скаляризма в 5-мерной теории	293
8.5.	Вариант 5-мерной теории Клейна—Фока—Румера	296
	8.5.1. Общая теория относительности как 5-оптика	297
	8.5.2. 5-Мерная теория Клейна—Фока—Румера	298
	8.5.3. Квантовая механика и геометрофизика	301
8.6.	Анализ критических замечаний по 5-мерию	303
Глава 9.	8-Мерная геометрическая теория грави-сильных взаимодей-	
	ствий	308
9.1.	Основания 8-мерной теории	309
	Геометрический прообраз взаимодействий	313
	9.2.1. Тетрадный метод в 8-мерной теории	313
	9.2.2. Геометрическая часть гиперплотности лагранжиана	317
	9.2.3. Фермионная часть гиперплотности лагранжиана	319
	Сведения из теории сильных взаимодействий	321
9.4.	Принцип соответствия	325
	9.4.1. Условия соответствия двух теорий в бозонном секторе	325

	9.4.2. Условия на коэффициенты из фермионного сектора 9.4.3. Заряды взаимодействий с нейтральными полями	329 330
0.5	Массовый сектор 8-мерной геометрической теории	331
9.0.	9.5.1. Проблема планковских масс заряженных бозонных по-	331
	лей	331
	9.5.2. Конформное преобразование	332
	3.3.2. Конформное преобразование	JJ2
	Геометризация электрослабых взаимодействий	337
	Основания 7-мерной теории	338
10.2.	Переход от 8-мерия к 7-мерной теории	341
	10.2.1. Бозонный сектор	341
	10.2.2. Кварки в 7-мерной теории	344
10.3.	Бозонный сектор 7-мерной теории	346
	10.3.1. Триадный метод в 7-мерной теории	346
	10.3.2. Геометрическая часть плотности лагранжиана	349
10.4.	Сведения из модели электрослабых взаимодействий	351
	10.4.1. Бозонный сектор калибровочной модели	351
	10.4.2. Фермионный сектор калибровочной модели	352
10.5.	Принцип соответствия бозонных секторов	355
	10.5.1. Соответствие с калибровочной моделью	355
	10.5.2. Соответствие с 8-мерной теорией	356
10.6.	Заряды взаимодействий с нейтральными бозонами	358
	10.6.1. Нейтральные векторные поля и заряды кварков	358
	10.6.2. Заряды лептонов	361
10.7.	Фермионный сектор 7-мерной теории	364
	10.7.1. Септадный метод и обобщенные матрицы Дирака	364
	10.7.2. Лагранжиан взаимодействия фермионов с векторными	
	бозонами	367
10.8.	Массовый сектор 7-мерной теории	370
	10.8.1. Массы векторных бозонов	370
	10.8.2. Хиггсовские скалярные бозоны в калибровочной мо-	
	дели	373
France 11	6 Manyag manyag Varrayag Varrayag	376
	6-Мерная теория Калуцы—Клейна	$\frac{370}{377}$
11.1.	Переход от 7-мерия к 6-мерной теории 11.1.1. Бозонный сектор	377
		379
11.0	11.1.2. Фермионный сектор 6-Мерная геометрическая теория	380
11.2.		380
	11.2.1. Самостоятельный вариант 6-мерной теории	
11.9	11.2.2. Физическая интерпретация 6-мерной теории	382
11.5.	Физические поля негеометрической природы	385
	11.3.1. Негеометрическое скалярное поле	385
	11.3.2. Конформный фактор и массовый сектор 6-мерной тео-	205
11 4	рии	387
	Магнитные поля астрофизических объектов	389
	Шестимерие с двумя времени-подобными координатами	392
11.6.	Выводы, замечания, гипотезы	396

•

Часть IV	. Метафизические основы миропонимания	399
Глава 12.	Метафизические парадигмы в фундаментальной физике	401
12.1.	Теории гравитации в триалистической парадигме	403
	12.1.1. Неэйнштейновские теории гравитации	403
	12.1.2. Релятивистская теория гравитации	405
	12.1.3. «Перелицовка» ОТО в теорию триалистической пара-	
	дигмы	408
12.2.	Калибровочная теория взаимодействий	410
	12.2.1. Калибровочная теория электромагнетизма	410
	12.2.2. Калибровочная теория электрослабых взаимодействий	412
	12.2.3. Калибровочный подход к описанию гравитации	414
12.3.	Теория гравитации в теоретико-полевом миропонимании	416
	12.3.1. Суперпространство	416
	12.3.2. Суперполевой мультиплет	419
	12.3.3. Теории супергравитации	421
	12.3.4. Теория суперструн	424
12.4.	Геометрическое миропонимание	426
	12.4.1. Идея всеобщей геометризации физики	426
	12.4.2. Теория Райнича—Уилера и ее обобщения	428
Глава 13.	Концепция дальнодействия	432
13.1.	Принцип действия Фоккера	433
13.2.	Фейнмановская теория поглотителя	437
13.3.	Прямое гравитационное взаимодействие	441
13.4.	ОТО в концепции дальнодействия	443
13.5.	Концепция дальнодействия в многомерии	445
	13.5.1. Теория Калуцы в концепции дальнодействия	446
	13.5.2. Клейновское 5-мерие в концепции дальнодействия	449
13.6.	Концепции дальнодействия и близкодействия	452
13.7.	Выводы из сравнения метафизических парадигм	456
Глава 14.	Парадигмальные проблемы общей теории относительности	461
14.1.	Эффекты ОТО в разных метафизических парадигмах	462
14.2.	Проблема энергии-импульса гравитационного поля	464
	14.2.1. Ситуация с законами сохранения энергии и импульса	405
	в ОТО	465
140	14.2.2. Критика псевдотензорного подхода	468
14.3.	Системы отсчета и законы сохранения	473
	14.3.1. Монадные векторы энергии	473
	14.3.2. Тетрадные комплексы энергии-импульса	476
111	14.3.3. Определения грави-инерциальной суперэнергии	478
14.4.	Проблема гравитационных волн	480
	14.4.1. Трудности общепринятой трактовки гравитационных	401
	BOJH	481
	14.4.2. Алгебраический подход к определению гравитацион-	400
	ных волн	483

Оглавление 9

14.4.3. Референционный анализ грави-инерциальных волно-	405
вых процессов	485
14.4.4. Слабые грави-инерциальные волны	489
14.5. Воздействие грави-инерциальных волн на прибор	494
14.5.1. Поведение свободных пробных масс в слабой плоской	
грави-инерциальной волне	494
14.5.2. Воздействие грави-инерциальных волн на детектор	496
14.6. Проблема квантования гравитации	501
14.6.1. Метафизический характер проблемы квантования гра-	
витации	501
14.6.2. Замечания по некоторым исследованиям проблемы	
квантования гравитации	503
14.6.3. Гипотеза гравитонов	505
14.7. Пределы измеримости геометрических понятий	509
14.7.1. Планковская длина и коллективные ошибки	509
14.7.2. Мысленные эксперименты	512
Заключение	516
Литература	521
Предметный указатель	531