УДК 544 ББК 24.5 Л84

> Печатается по решению редакционно-издательского совета Южного федерального университета (протокол № 4 от 5 мая 2016 г.)

Рецензенты:

доктор химических наук, профессор кафедры «Химия» Ростовского государственного университета путей сообщения *Булгаревич С. Б.*; доктор химических наук, профессор, заведующий кафедрой химии Южного федерального университета *Уфлянд И. Е.*

Луков, В. В.

Л84 Физические методы исследования в химии: учебное пособие / В. В. Луков, И. Н. Щербаков; Южный федеральный университет. – Ростов-на-Дону: Издательство Южного федерального университета, 2016. – 216 с.

ISBN 978-5-9275-2023-7

Учебное пособие соответствует требованиям ФГОС ВО и программе учебной дисциплины «Физические методы исследования в химии». Детально изложены основные теоретические понятия и рассмотрены методики таких современных методов исследования, как ИК-, ЯМР-, ЭПР-, EXAFS- и электронная спектроскопия, а также метода дипольных моментов.

Предназначено для студентов, аспирантов и преподавателей химических факультетов университетов.

УДК 544 ББК 24.5

ISBN 978-5-9275-2023-7

 $^{\circ}$ Южный федеральный университет, 2016

© Луков В. В., Щербаков И. Н., 2016

© Оформление. Макет. Издательство Южного федерального университета, 2016

Оглавление

Введение	5
Общая характеристика физических методов исследования	7
Глава 1. Электрические методы исследования	
1.1. Электрический дипольный момент молекулы	16
по электрическим дипольным моментам в химии	
Глава 2. Электронная спектроскопия	34
2.1. Метод электронной спектроскопии	
соединений2.3. Электронные спектры комплексов переходных металлов	42
2.4. Люминесценция	
3.1. Физическая природа явления	
3.2. Силовая постоянная	67
3.3. Колебания многоатомных молекул	
3.4. Концепция групповых колебаний и ее недостатки 3.5. Проведение структурного анализа по инфракрасным спектрам	
Глава 4. Спектроскопия ядерного магнитного резонанс	a . 79
4.1. Физическая природа явления	
и его значения	83
неэквивалентными ядрами	
4.4. Динамические эффекты в спектрах ЯМР	97
4.5. ЯМР в биохимии и медицине	104

Глава 5. Спектроскопия электронного пара	магнитного
резонанса	115
5.1. Явление и метод электронного парамагн	итного
резонанса	
5.2. Электронный эффект Зеемана. Атом водо	
в магнитном поле	=
5.3. Заселенности спиновых уровней	
5.4. Величина параметра g	
5.5. Блок-схема ЭПР-спектрометра	
5.6. Сверхтонкое взаимодействие	
отог одоритотное дошилодопотацие	
Глава 6. Рентгеновская спектроскопия (ЕХА	AFS-
и XANES-спектры)	142
6.1. Взаимодействие рентгеновских лучей с в	ешеством142
6.2. Закон рентгеновского поглощения в веще	
6.3. Структура края рентгеновских спектров в	
6.4. Получение структурной информации	
из EXAFS-спектров	163
6.5. Ближняя структура основного края ренті	
спектра поглощения – XANES	
6.6. Использование EXAFS-спектров для ана.	
локальной атомной структуры вещества	
6.7. Экспериментальные методы измерений	
рентгеновских спектров поглощения	183
point on obotim on outpub notito memilimini	100
Тестовые задания ко всем методам	193
Литература	212