УДК 532.5 ББК 22.365 А 15

Рецензенты:

кнд. физ.-мат. наук, доцент **Е. И Дискаева** (ГБОУ ВПО «Ставропольский государственный медицинский университет»); д-р техн. наук, профессор **В. А. Халюткин** (ФГБОУ ВПО «Ставропольский государственный аграрный университет»)

Аборнев Д. В.

А 15 Динамические характеристики катионитных фильтров в процессе умягчения высокоминерализованных вод: монография. – Ставрополь: Изд-во СКФУ, 2015. – 102 с.

ISBN 978-5-9296-0772-1

В монографии дан обзор и анализ исследований, имеющихся в области различных методов опреснения минерализованных вод. Составлена и проанализирована общая система дифференциальных уравнений неравновесной и нестационарной динамики ионного обмена и сделан вывод о возможности ее успешного решения. Выполнена разработка теории динамики нестационарного и неравновесного процесса ионообменного умягчения минерализованных вод, исследована геометрия зернистого слоя катионита КУ-2, а также произведен перевод системы уравнений динамики ионного к безразмерным относительным концентрациям ионов. Автором предложено и разработано оригинальное решение этой системы уравнений с использованием конечно-разностных схем. Для автоматизированного решения разработан специальный программный комплекс. Произведено обобщение и анализ экспериментальных данных по динамике парного ионного обмена в динамических и нестационарных условиях. Определены расчетные уравнения для определения коэффициентов внешнего массопереноса и коэффициентов внутренней ионообменной диффузии внутри зерна ионита. Разработаны упрощенные уравнения для инженерно-технических работников по определению динамических характеристик катионитных фильтров.

> УДК 532.5 ББК 22.365

- © Аборнев Д. В., 2015
- © ФГАОУ ВПО «Северо-Кавказский федеральный университет», 2015

ISBN 978-5-9296-0772-1

Ä

ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ

Условные обозначения

В геометрии зернистого слоя:

d – диаметр зерна ионита, см;

R – радиус зерна ионита, см;

 ε – порозность (или пористость) слоя, под которой понимают долю свободного объема пор в зернистом слое;

 $V_{c\pi}$ – объем зернистого слоя, см³;

 V_{κ} – объем зерен ионита в слое, см³;

 $V_{\text{пор}}$ – объем пор между зернами, см³;

H– высота слоя ионита, см;

F – площадь сечения ионообменной колонны, см 2 ;

 V_{3} – объем одного зерна ионита, см³;

 n_{3} – число зерен ионита в слое, шт;

 $S_{_{3}}$ – площадь поверхности одного зерна ионита, см².

 $S_{_{\rm K}}$ – наружная поверхность зерен ионита в объеме слоя, см².

 $\rho_{\mbox{\tiny cn}}$ – плотность сухого ионита, отнесенная к мл влажного набухшего слоя, г/мл;

 $\rho_{_{\rm K}}-$ плотность сухого ионита, отнесенная к мл влажного набухшего зерна ионита, г/мл;

 $w_{_{\rm K}}$ – влажность набухшего ионита в равновесном растворе, %

В уравнениях динамики ионного обмена:

C – концентрация иона в растворе, мг экв/мл;

e – концентрация иона в катионите, отнесенная к мл слоя, мг экв/мл;

 $C_{\rm p}$ – полная постоянная концентрация всех обменивающихся ионов в растворе, мг экв/мл;

- $e_{_{\rm к.c.n}}$ полная постоянная концентрация всех обменивающихся ионов в катионите, отнесенная к мл слоя, мг экв/мл;
 - r переменный радиус внутри зерна катионита, см;
- $W_{_{\! 0}}$ приведенная скорость фильтрования раствора через слой катионита, см/с;
 - au текущее время, отсчитываемое от начала процесса, с;

СОДЕРЖАНИЕ

ОСНОВНЫЕ УСЛОВНЫЕ ОБОЗНАЧЕНИЯ И СОКРАЩЕНИЯ
введение5
ГЛАВА 1. ОБЗОР СОСТОЯНИЯ ИССЛЕДОВАНИЙ
И ПОСТАНОВКА ЗАДАЧИ
1.1. Проблема использования минерализованных вод8
1.2. Обзор исследований по динамике сорбции натрий-
катионитного процесса умягчения минерализованных вод16
1.3. Основные закономерности неравновесной нестационарной динамики ионного обмена
ГЛАВА 2. РАЗРАБОТКА ТЕОРИИ ДИНАМИКИ
НЕСТАЦИОНАРНОГО ИОННОГО ОБМЕНА
В НЕРАВНОВЕСНЫХ УСЛОВИЯХ
2.1. Геометрия зернистого слоя
2.2. Основные уравнения динамики ионного обмена38
2.3. Анализ путей решения и выбор метода решения41
2.4. Решение системы уравнений методом конечных
разностей
ГЛАВА 3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНОГО
ИССЛЕДОВАНИЯ ДИНАМИКИ ИОННОГО ОБМЕНА
3.1. Разработка программы для обработки экспериментальных
данных, программа «Режим»53
3.2. Программа расчета диффузии поглощаемого иона внутри
зерна ионита, подпрограмма «Зерно»57
3.3. Программа расчета равновесной концентрации
поглощаемого иона в растворе на поверхности зерна ионита,
подпрограмма «Поиск»59
3.4. Математическая обработка экспериментальных данных62
3.5. Практическое применение результатов проведенного
исследования

ЗАКЛЮЧЕНИЕ	80
ЛИТЕРАТУРА	81
ПРИЛОЖЕНИЯ	
Приложение А	94
Приложение Б	97

Ä

Ä