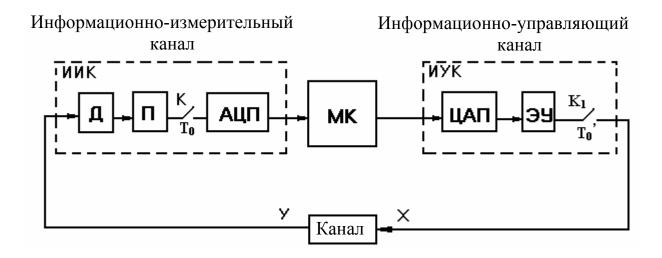


П. Н. Грименицкий, А. Н. Лабутин, Б. А. Головушкин

РАСЧЕТ ПАРАМЕТРОВ НАСТРОЙКИ ЦИФРОВЫХ РЕГУЛЯТОРОВ

Учебное пособие для студентов специальности «Автоматизация технологических процессов и производств»



Иваново 2008

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования Ивановский государственный химико-технологический университет

П. Н. Грименицкий, А. Н. Лабутин, Б. А. Головушкин

РАСЧЕТ ПАРАМЕТРОВ НАСТРОЙКИ ЦИФРОВЫХ РЕГУЛЯТОРОВ

Учебное пособие для студентов специальности «Автоматизация технологических процессов и производств»

Иваново 2008

УДК 658.512

Грименицкий, П. Н. Расчет параметров настройки цифровых регуляторов: учеб. пособие для студентов специальности «Автоматизация технологических процессов и производств» / П. Н. Грименицкий, А. Н. Лабутин, Б. А. Головушкин; Иван. гос. хим.-технол. ун-т. – Иваново, 2008. – 48 с. ISBN 978-5-9616-0295-1

В учебном пособии изложены общие вопросы теории дискретных импульсных и цифровых систем управления, приведены примеры расчета систем управления, ориентированных на различные критерии качества их работы.

Предназначено для студентов специальности «Автоматизация технологических процессов и производств» очной и заочной форм обучения.

Табл. 3. Ил. 20. Библиогр.: 7 назв.

Печатается по решению редакционно-издательского совета Ивановского государственного химико-технологического университета.

Рецензенты:

«Центр информационных технологий» В.-Волжского филиала ОАО «Центртелеком» г. Иваново; кандидат технических наук В. Д. Таланов (Ивановский государственный энергетический университет).

ISBN 978-5-9616-0295-1

© Грименицкий П. Н., Лабутин А. Н., Головушкин Б. А., 2008

Ä

© Ивановский государственный химико-технологический университет, 2008

ВВЕДЕНИЕ

Учебное пособие предназначено для использования в ходе изучения следующих дисциплин: «Теория автоматического управления», «Микропроцессорные информационно-управляющие системы», «Автоматизация технологических процессов и производств» студентами специальности «Автоматизация технологических процессов и производств» очной и заочной форм обучения.

В учебном пособии изложены общие вопросы теории дискретных и импульсных цифровых управляющих систем, приведены примеры расчета систем управления, ориентированных на различные критерии качества их работы. Подробно описан порядок расчета робастных систем с заданным запасом устойчивости.

Цель учебного пособия — познакомить и научить студентов расчету дискретных и импульсных систем управления.

1. Динамические системы и их характеристики

Любая динамическая система (ДС) преобразовывает входной сигнал (входное воздействие) x(t) в выходной сигнал (реакцию) y(t) (рис. 1).

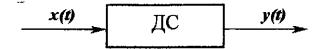


Рис. 1. Физическая структура динамической системы

На языке математики это означает, что каждой динамической системе может быть поставлен в соответствие оператор A, который это преобразование и осуществляет (рис. 2).

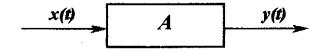


Рис. 2. Математическая структура динамической системы

Это первый постулат математического моделирования.

Второй постулат гласит, что математическая модель должна быть адекватна динамической системе.

Третий постулат говорит о том, что если математическая модель адекватна динамической системе, то весь анализ этой системы может проводиться на уровне математической модели:

$$y(t) = A[x(t)].$$
 (1.1)

Уравнение (1.1) называется операторным уравнением.

<u>Оператор А</u> — это символическая запись совокупности математических и логических правил, которые ставят в соответствие входной функции выходную функцию.

Пример: пусть поведение ДС описывается дифференциальным уравнением (ДУ), тогда совокупность правил, с помощью которых мы решаем это уравнение, и будет оператором.

Будем пользоваться также терминами-синонимами: x(t) – вход, входное воздействие, входная функция.

y(t) – выход, выходная функция, реакция движения.

ДС делятся на два класса:

- 1) линейные;
- 2) нелинейные.

ДС называется линейной, если для неё справедлив принцип суперпозиции:

$$A[\sum a_k x_k(t)] = \sum a_k A[x_k(t)].$$

Этот принцип читается так: реакция ДС на сумму входных воздействий равна сумме реакций на каждое входное воздействие в отдельности.

ДС называется *нелинейной*, если для нее несправедлив принцип суперпозиции.

В математике известно выражение:

$$x(t) = \int_{-\infty}^{+\infty} x(\tau)\delta(t-\tau)d\tau, \qquad (1.2)$$

где $\delta(t-\tau)$ – смещенная функция Дирака.

Операцию смещения поясним на примере функции I(t) (рис. 3).

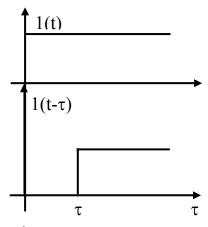


Рис. 3. Графическая интерпретация операции смещения

Таким образом, операция смещения означает сдвиг исходной функции вправо от точки t=0 без изменения её формы. Функция Дирака является обобщённой функцией со свойствами:

$$\begin{cases} \delta(t) = 0 & \text{при} \quad t \neq 0, \\ \delta(t) = \infty & \text{при} \quad t = 0, \end{cases}$$
 (1.3)

$$\int_{-\infty}^{+\infty} \delta(t)dt = 1.$$
 (1.4)

Функцию Дирака можно интерпретировать как предельный случай прямоугольного импульса (рис. 4).

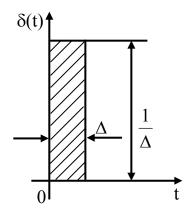


Рис. 4. Единичный импульс

Любой импульс характеризуется:

- ullet длительностью $au_u = \Delta$,
- ullet амплитудой $A_u=1/\Delta$,
- ullet площадью (интенсивностью) $S_u = A_u \cdot au_u = 1$.

Устремим $\Delta \to 0$, $\tau_u \to 0$, $A_u \to \infty$, $S_u \to 1$.

В связи с этой интерпретацией функцию Дирака называют единичным импульсом, который имеет бесконечно малую длительность, бесконечно большую амплитуду и площадь равную единице.

Если единичный импульс $\delta(t-\tau)$ — это элементарный импульс с единичной площадью, то $x(\tau)\delta(t-\tau)$ — это элементарный импульс с площадью $x(\tau)$. Тогда формула (1. 2) дает разложение исходной функции x(t) на элементарные импульсы с площадью $x(\tau)$. Графики элементарных импульсов представляют собой стрелки длиной $x(\tau)$ (рис. 5).

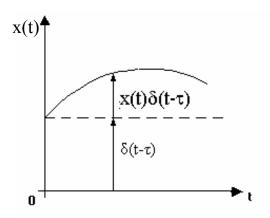


Рис. 5. Разложение исходной функции x(t) на элементарные импульсы

Ввиду важности формулы 1. 2 докажем её.

Подынтегральная функция всюду равна нулю, кроме точки $\tau = t$ [см. свойство (1. 3)], тогда:

$$x(t) = \int\limits_{-\infty}^{+\infty} x(\tau) \delta(t-\tau) d\tau = x(t) \int\limits_{-\infty}^{+\infty} \delta(t-\tau) d\tau = x(t) \ .$$

Вспомним теперь о принципе суперпозиции, который справедлив для линейных ДС:

$$y(t) = A[x(t)] = A \begin{bmatrix} +\infty \\ \int x(\tau)\delta(t-\tau)d\tau \end{bmatrix} = \int_{-\infty}^{+\infty} x(\tau)A[\delta(t-\tau)]d\tau.$$

Реакция ДС на смещенный единичный импульс называется весовой функцией .

$$g(t,\tau) = A[\delta(t-\tau)]. \tag{1.5}$$

С учётом обозначения (1. 5) запишем:

$$y(t) = \int_{-\infty}^{+\infty} g(t, \tau) x(\tau) d\tau.$$
 (1. 6)

Весовая функция g(t) обладает следующим фундаментальным свойством:

$$g(t,\tau) = 0$$
 при $\tau > t$

так как τ – момент действия импульса, а t – текущее время (рис. 6).

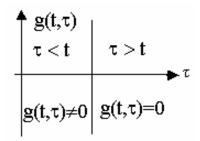


Рис. 6. Графическая иллюстрация свойств весовой функции

Это фундаментальное свойство весовой функции определяет физическую возможность ДС. При учете физической возможности формула (1. 6) запишется:

$$y(t) = \int_{-\infty}^{t} g(t, \tau) x(\tau) d\tau.$$
 (1.7)

Формула (1. 7) отражает тот физический факт, что входное воздействие действует на ДС бесконечно долго, то есть начальное состояние системы находится бесконечно далеко от текущего времени t. В этом случае ДС теряет память, так как она забывает своё начальное состояние. Поэтому формула (1. 7) описывает установившиеся процессы в ДС. Чтобы вернуть ДС память надо положить x(t) = 0 при t < 0.

$$y(t) = \int_{0}^{t} g(t, \tau)x(\tau)d\tau. \qquad (1.8)$$

Формула (1. 8) описывает переходные процессы в ДС. Переходный процесс уже зависит от начальных условий.

<u>По степени абстракции математической модели можно привести следующую классификацию ДС:</u>

- 1) математически допустимые [формула (1. 6)];
- 2) физически допустимые [формулы (1. 7) и (1. 8)];
- 3) физически возможные;
- 4) реальные ДС.

Все линейные ДС делятся на два больших класса:

- стационарные;
- нестационарные.

Линейная ДС называется *нестационарной*, если $g(t,\tau)$ зависит от обоих аргументов и $g(t,\tau_1)\neq g(t,\tau_2)$ при любых τ_1 и τ_2 , кроме $\tau_1=\tau_2$ (рис. 7).

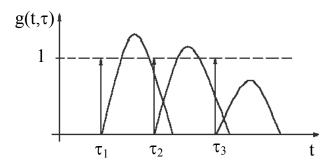


Рис. 7. Нестационарная линейная динамическая система

Нестационарные ДС описываются линейными ДУ с переменными коэффициентами. Именно переменные коэффициенты и обеспечивают нестационарность.

Линейная ДС называется *стационарной*, если $g(t,\tau_I)=g(t,\tau_2)$, то есть $g(t,\tau)$ не зависит от τ , $g(t,\tau)=g(t-\tau)$ (рис. 8).

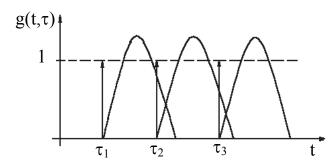


Рис. 8. Стационарная линейная динамическая система

Из рисунка следует, что для стационарной ДС $g(t,\tau)$ можно определить при $\tau=0$, а затем определить операцию смещения $g(t-\tau)$. В связи с этим соответствующие формулы перепишутся:

$$y(t) = \int_{-\infty}^{t} g(t - \tau)x(\tau)d\tau = \int_{0}^{+\infty} g(\tau)x(t - \tau)d\tau.$$
 (1.9)

Второе равенство в формуле (1. 9) требуется доказать.