УДК 338.45: 662.6 ББК 31.15 Б 90

Рецензенты: Член-корреспондент РАН, профессор, д. т. н. *Мешалкин В. П.* (РХТУ им. Д. И. Менделеева, Россия)
Ректор НТУ ХПИ, профессор, д. т. н. *Товажнянский Л. Л.*Профессор НТУ ХПИ, к. т. н. *Капустенко П. А.*(Национальный Технический Университет «Харьковский Политехнический Институт», Украина)

Б 90 Булатов И. С.

Пинч-технология. Энергосбережение в промышленности – СПб.: Страта, 2018. – 140 с.

ISBN 978-586983-113-2

В учебном пособии рассмотрены вопросы интегрирования тепла и энергии с использованием пинч-технологии, которая зарекомендовала себя как одна из наиболее эффективных концепций энергосбережения в перерабатывающей промышленности. Учебное пособие предназначено для студентов при изучении курсов «Механика жидкости и газа», «Гидрогазодинамика», «Гидравлика» как в технических вузах, так и в классических университетах. Будет интересно для специалистов, занимающихся решением теоретических и прикладных задач по гидродинамике, тепло- и массообмену. Книга будет полезна аспирантам и магистрантам при выполнении НПР и работе над магистерскими и кандидатскими диссертациями.

ISBN 978-586983-113-2

Ä

ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ	5
ВВЕДЕНИЕ / INTRODUCTION	8
ГЛАВА І. СОСТАВНЫЕ ТЕПЛОВЫЕ КРИВЫЕ	13
1.1. Энтальпийные диаграммы тепловых потоков	
1.2. Составные тепловые кривые технологических потоков	
ГЛАВА II. ПИНЧ-МЕТОД	23
2.1. Сущность пинч-метода	
2.2. Эвристические правила проектирования оптимальных	
энергносберегающих XTC на основе пинч-метода	25
ГЛАВА III. ТАБЛИЧНЫЙ АЛГОРИТМ	
И СЕТОЧНЫЕ ДИАГРАММЫ	33
3.1. Табличный алгоритм определения целевых значений	
рекуперируемой в XTC энергии	33
3.2. Методика построения сеточных диаграмм	
ГЛАВА IV. ПРОЕКТИРОВАНИЕ ТЕПЛООБМЕННЫХ СИСТЕМ	
С МАКСИМАЛЬНОЙ РЕКУПЕРАЦИЕЙ ТЕПЛА	47
ГЛАВА V. ЭКОНОМИЧЕСКИЕ КОМПРОМИССЫ	
ПРИ ПРОЕКТИРОВАНИИ ТЕХНОЛОГИЧЕСКИХ СИСТЕМ	59
5.1. Локальные и глобальные экономические компромиссы	59
5.2. Экономические компромиссы	
«капитальные затраты – расход энергии»	61
5.3. Прогнозирование величины капитальных затрат	
на проектируемые теплообменные системы	67
5,4. Определение глобальных значений целевых функций	
(капитальных и эксплуатационных затрат) при проектировании	
оптимальных теплообменных систем	73

Ä

ГЛАВА VI. ВЫБОР ЭНЕРГОНОСИТЕЛЕЙ (УТИЛИТ)	/S
6.1. Общие предпосылки к выбору утилит	0 ک
6.2. Методика выбора утилит технологической схемы	U
с использованием составных кривых	/C
6.3. Методика выбора энергоносителей предприятия	
с использованием больших составных кривых	:4
6,4. Области применения больших составных кривых	7
Тепловые машины	
Тепловые насосы	
ГЛАВА VII. ПИНЧ-МЕТОД РЕКОНСТРУКЦИИ	
ДЕЙСТВУЮЩИХ ТЕПЛООБМЕННЫХ СИСТЕМ	13
7.1. Существующие методы реконструкции теплообменных систем 10	
7.2. Теоретические основы пинч-метода реконструкции теплообменных	_
систем с использованием действующих теплообменников10	15
Ограничения в структуре теплообменных систем	
с использованием действующих теплообменников10	15
Определение пинч-точки теплообменных систем10	7
Кривые целевых значений для реконструируемых	
теплообменных систем с использованием действующих	
теплообменников10	9
Устранение пинча теплообменной системы	
Выбор изменений структуры при реконструкции	
теплообменной системы	2
Определение возможности разделения потоков	
в теплообменной системе11	4
7.3. Комплексный алгоритм оптимальной реконструкции теплообменной	
системы с использованием действующих теплообменников	5
Этап диагностики и структурных изменений	6
Этап оптимизации	7
ГЛАВА VIII. ПИНЧ-МЕТОД ПРОЕКТИРОВАНИЯ	
ПРОИЗВОДСТВЕННЫХ КОМПЛЕКСОВ11	9
8.1. Расширенный пинч-методдля проектирования оптимальных	
энергосберегающих производственных комплексов	
Энергетическая кривая производственного комплекса	0
Большая составная кривая энергоресурсов	
производственного комплекса	.5
8.2. Пример проектирования оптимального энергосберегающего	
комплекса первичной нефтепереработки	.7
ЗАКЛЮЧЕНИЕ / CONCLUSION	2
ПРИЛОЖЕНИЕ: Список рекомендуемой литературы	5
ПРИ ПОЖЕНИЕ: Глоссарий 13	0

• •