
АЛЬБОМ ПРИМЕРОВ

выполнения чертежа общего вида химического аппарата

Иваново 2009

• •

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования Ивановский государственный химико-технологический университет

АЛЬБОМ ПРИМЕРОВ

ВЫПОЛНЕНИЯ ЧЕРТЕЖА ОБЩЕГО ВИДА ХИМИЧЕСКОГО АППАРАТА

Составители: Н.Ю. Смирнов

Г.Д. Демидова Е.В. Миронов Е.Ю. Куваева Е.В. Таланов В.В. Яшков

Под редакцией Н.Ю. Смирнова

Иваново 2009

Ä

Составители: Н.Ю. Смирнов, Г.Д. Демидова, Е.В. Миронов, Е.Ю. Куваева, Е.В. Таланов, В.В. Яшков; Под ред. Н.Ю. Смирнова

УДК 744.4: 66.023 (084)

Альбом примеров выполнения чертежа общего вида химического аппарата / Сост. Н.Ю. Смирнов, Г.Д. Демидова, Е.В. Миронов и др.; под. ред. Н.Ю. Смирнова. – Иваново, 2009. – 20 с. Иван. гос. хим.-технол. ун-т.

В альбоме примеров выполнения чертежа общего вида химического аппарата приведены образцы чертежей общего вида теплообменных и выпарных аппаратов со степенью проработки, соответствующей объему заданий как технологических, так и механических специальностей. Выполненные примеры облегчат процесс работы студентов над чертежами общего вида в части: размещение графической и текстовой информации на чертеже, построение изображений, нанесение размеров.

Альбом предназначен для использования студентами первого курса технологических и механических специальностей в курсе «Инженерная графика», а также может быть использован студентами при выполнении графической части курсового проекта по дисциплине «Процессы и аппараты химического производства».

Репензент

кандидат технических наук Э.А. Козловский (Ивановский государственный химико-технологический университет)

Подписано в печать 13.03.2009 Формат $60x84^{-1}/_8$.Бумага писчая. Усл. печ. л.1,17 Уч.-изд. л. 1,29 Тираж 800 экз. Заказ

ГОУ ВПО Ивановский государственный химико – технологический университет

Отпечатано на полиграфическом оборудовании кафедры экономики и финансов ГОУ ВПО «ИГХТУ»

153000, г. Иваново, пр.Ф.Энгельса, 7.

Ä

СОДЕРЖАНИЕ

		Стр
1.	ПРИМЕР РАЗРАБОТКИ КОНСТРУКЦИИ ГОРИЗОНТАЛЬНОГО КОЖУХОТРУБЧАТОГО ТЕПЛООБМЕННИКА ${f F}={f 158}~{f m}^2$	4
2.	ПРИМЕР ВЫПОЛНЕНИЯ ЧЕРТЕЖА ОБЩЕГО ВИДА ВЕРТИКАЛЬНОГО КОЖУХОТРУБЧАТОГО КОНДЕНСАТОРА $\mathbf{F} = 110 \ \mathbf{m}^2$	13
3.	ПРИМЕР ВЫПОЛНЕНИЯ ЧЕРТЕЖА ОБЩЕГО ВИДА ВЕРТИКАЛЬНОГО КОЖУХОТРУБЧАТОГО ТЕПЛООБМЕННИКА $\mathbf{F} = 115 \ \mathbf{m}^2$	13
4.	ПРИМЕР ВЫПОЛНЕНИЯ ЧЕРТЕЖА ОБЩЕГО ВИДА ВЫПАРНОГО АППАРАТА С ЕСТЕСТВЕННОЙ ЦИРКУЛЯЦИЕЙ $\mathbf{F}=25\ \mathbf{m}^2$	13
5.	ПРИМЕР ВЫПОЛНЕНИЯ ЧЕРТЕЖА ОБЩЕГО ВИДА ВЫПАРНОГО АППАРАТА С ВЫНЕСЕННОЙ ЗОНОЙ КИПЕНИЯ $\mathbf{F} = 77 \text{ m}^2$	13

1. ПРИМЕР РАЗРАБОТКИ КОНСТРУКЦИИ ГОРИЗОНТАЛЬНОГО КОЖУХОТРУБЧАТОГО ТЕПЛООБМЕННИКА $F = 158 \text{ m}^2$

Ниже предлагается пример разработки конструкции (техническое задание, очередность и объем проработки конструктивных элементов, чертеж общего вида) горизонтального кожухотрубчатого теплообменника, выполняемый на стадии технического проекта. В примере предусмотрено разбитие теплообменника на три сборочные единицы: корпус, правую и левую крышки. Чертежи общего вида сборочных единиц не разработаны, что соответствует объему выполнения задания студентами технологических специальностей.

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

Сконструировать горизонтальный кожухотрубчатый подогреватель, предназначенный для подогрева этилена топочными газами. Выполнить чертеж общего вида аппарата на стадии технического проекта.

На рисунке дано схематическое изображение аппарата.

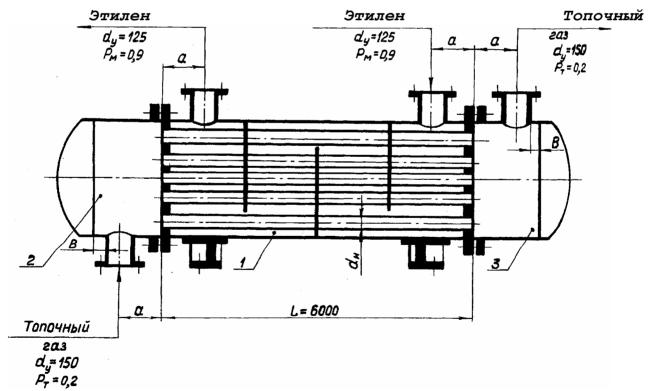


Рис. 1

УСТРОЙСТВО АППАРАТА

Подогреватель представляет собой совокупность сборочных единиц: корпус -1 , крышка левая-2, крышка правая -3.

Корпус 1 состоит из сварной цилиндрической обечайки, внутри которой размещается пучок труб. Трубы закрепляются вальцовкой в трубных решетках, привариваемых к торцам обечайки. Корпус 1 снабжен двумя штуцерами для ввода в межтрубное пространство аппарата и вывода из него подогреваемого этилена. Подогреватель располагается на двух опорах, которые, так же как и штуцеры, крепятся к обечайке с помощью сварки.

Крышки 2 и 3 состоят из цилиндрических обечаек, к торцам которых приварены днища и фланцы. Форма днищ крышек 2 и 3 выбирается в зависимости от давления в подогревателе. Крышка 2 снабжена штуцером для подвода в подогреватель топочного газа, а крышка 3 — штуцером для отвода из него топочного газа. Штуцеры соединяются с крышками с помощью сварки.

 Φ ланцы крышек 2 и 3 крепятся к трубным решеткам корпуса 1 подогревателя с помощью болтов.

ПРИНЦИП ДЕЙСТВИЯ АППАРАТА

Этилен непрерывно поступает в межтрубное пространство подогревателя через штуцер в корпусе 1 и, обтекая размещенные в нем трубы, нагревается, затем в нагретом состоянии удаляется из аппарата через штуцер выхода в корпусе 1. Нагрев этилена осуществляется за счет передачи тепла от труб, по которым пропускают топочный газ. Топочный газ подводится в аппарат через штуцер в крышке 2 и отводится из него через штуцер в крышке 3.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА АППАРАТА

- 1. Поверхность теплообмена F 158 M^2 .
- 2. Давление этилена в межтрубном пространстве $P_{\scriptscriptstyle M}$ 0,9МПа.
- 3. Средняя температура этилена $t_{\scriptscriptstyle M}$ 80°C.
- 4. Давление топочного газа в трубном пространстве $P_{\scriptscriptstyle T}$ 0,2 МПа.
- 5. Средняя температура топочного газа t_{π} 200°C.

6. Трубы теплообменные

	- наружный диаметр труб $d_{\scriptscriptstyle m H}$	20 mm;
	- длина труб 1	6000 мм;
	- количество труб	439 шт.
7.	Условный проход штуцеров этилена $\mathbf{d}_{\mathtt{y}1}$	125 мм.
8.	Условный прохол штуцеров топочного газа д	150 MM.

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Проанализировав техническое задание, разобравшись в устройстве и принципе работы аппарата, его расчет ведем в следующей последовательности:

1. Определяем конструкционные материалы элементов химического аппарата по [1. Табл. 4.23], ориентируясь на наиболее дешевые материалы, приемлемые для данных условий работы. При этом условия работы этих элементов (соприкасаемая среда, температура, давление) берем из технического задания. В нашем случае принимаем углеродистую сталь обыкновенного качества

Ст.3сп ГОСТ 380-94.

- 2. Определяем базовый (внутренний) диаметр корпуса аппарата. Для этого:
- 2.1. По [1. Табл. 4.13] определяем шаг между теплопередающими трубами t

$$t = 26 \text{ MM}.$$

2.2. По [1. Табл. 4.15] определяем количество труб n на диаметре аппарата

$$n = 23$$
.

Из этой же таблицы определяем, что в шестиугольнике находится 397 труб, кроме того, в сегментах заполнено по одному ряду, в каждом из которых находится по 7 труб.

2.3. Определяем расстояние L между наружными поверхностями наиболее удаленных труб диаметрального ряда [рис. 2]:

$$L = (n-1) t + d_H = (23-1) 26 + 20 = 586 \text{ MM}.$$

2.4. Определяем минимально допустимый зазор между крайними трубами трубного пучка и обечайкой:

$$\Delta=t-d_{\rm H}=26-20=6$$
 mm.

2.5. Определяем минимально допустимый внутренний диаметр обечайки:

$$D_{min} = L + 2\Delta = 586 + 2 \cdot 6 = 590 \text{ MM}.$$

Принимаем внутренний диаметр обечайки корпуса как ближайшую большую величину стандартного ряда к D_{min} [1. Табл. 4.1].

$$D_{BH} = 600 \text{ MM}.$$

3. По [1. Табл. 4.3] определяем толщину стенки обечайки корпуса S_1 , а также величины стенок обечаек крышек: левой S_2 и правой S_3 . При выборе толщины стенок расчетное давление принимаем как ближайшую большую табличную величину к давлению на данный элемент теплообменника.

$$S_1 = 10 \text{ mm}; \qquad S_1 = S_3 = 8 \text{ mm}.$$

4. Вычерчиваем предварительную схему размещения теплопередающих труб в теплообменнике (разбивку трубной решетки). Рекомендуем эту работу выполнить в масштабе 1:2 или 1:4 (не менее) с предельной точностью как по угловым, так и по линейным размерам, в частности угол 60° откладывать путем деления окружности на шесть равных частей циркулем: линейные размеры (шаг t) откладывать с помощью циркуля – измерителя.

Схема размещения труб в трубной решетке представлена на рис. 2.

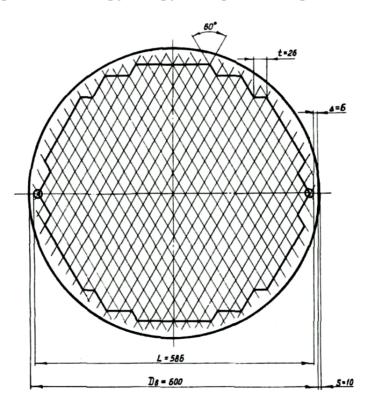


Рис.2. Схема размещения труб в трубной решетке (М 1:4)

5. Выбираем конструкцию днищ крышек теплообменника. **Критерий выбора:** принимаем технологически наиболее простое в изготовлении (наиболее дешевое) днище, удовлетворяющее параметрам работы данного элемента в теплообменнике.

В нашем случае — выбираем сферическое неотбортованное днище с параметрами: $D_{\scriptscriptstyle B}=600$ мм; $R_{\scriptscriptstyle O}=600$ мм; $S_{\scriptscriptstyle O}=8$ мм.

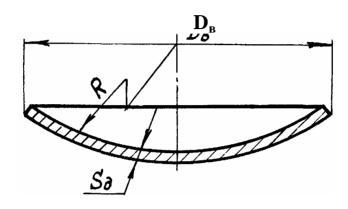


Рис. 3. Конструкция выбранного сферического неотбортованного днища

6. Выбираем фланцы для присоединения крышек теплообменника к его корпусу («аппаратные» фланцы). **Критерий выбора аналогичен критерию выбора днищ.**

Выбираем плоские приварные фланцы с параметрами:

 $D_{\rm B} = 600 \, \text{MM};$

 $P = 0,3 \ M\Pi a$ (ближайшая большая величина к $P_{\scriptscriptstyle T} = 0,2 \ M\Pi a$);

 $D_{\varphi} = 720 \text{ mm}; \;\; D_{\delta} = 680 \text{ mm}; \;\; D_{1} = 644 \text{ mm}; \; D_{2} = 616 \text{ mm};$

 $H = 25 \text{ mm}; \quad d = 23 \text{ mm}; \quad n = 20 \text{ iiit.};$

Болты (шпильки) М20

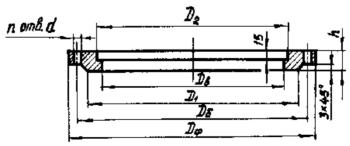


Рис. 4. Конструкция фланца, выбранного для присоединения крышки к корпусу

7. Крышки теплообменника с помощью фланцев, выбранных в п. 5, присоединяются к **трубным решеткам** корпуса, имеющим фланцевые окончания с размерами, равными размерам крышек.

Предварительно толщину трубной решетки рассчитываем по формуле:

$$H \ge h + S_1 = 25 + 10 = 35 \text{ MM}.$$

Принимаем толщину трубной решетки равной ближайшей большей величине стандартного ряда толщин листового проката [1. Табл. 4.1].

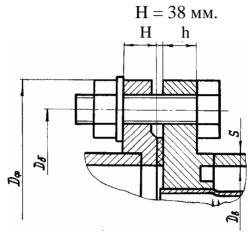


Рис. 5. Конструкция фланцевого присоединения крышки к корпусу аппарата

- 8. В качестве материала **прокладок** для уплотнения крышек с корпусом принимаем картон асбестовый, выпускаемый по ГОСТ 2850-95 [1. Табл. 4.23], работающий при температурах до 475°C. Толщина прокладки S=2 мм. Внутренний диаметр прокладки равен $D_B=600$ мм, наружный $D_1=644$ мм (принимаются по размерам привалочных поверхностей фланца).
- 9. Определяем расчетную длину болтов $l_{\bf 6}$, крепящих крышки к корпусу теплообменника (см. рис. 5).

$$L_{6} = 2h + S + m + 0.25d \text{ MM},$$

где h =25мм – высота тарелки фланца;

S = 2 мм – толщина прокладки;

m = 16 мм – высота гайки M20 по ГОСТ 5915-70*;

d = 20 мм – номинальный диаметр болта.

$$L_6 = 2 \cdot 25 + 2 + 16 + 0.25 \cdot 20 = 73 \text{ MM}.$$